
CIS241

System-Level
Programming and Utilities

C Pointers

Erik Fredericks, frederer@gvsu.edu
Fall 2025

Based on material provided by
Erin Carrier, Austin Ferguson,
and Katherine Bowers

CIS241 | Fredericks | F25 | 33-c-pointers
1

mailto:frederer@gvsu.edu

Pointers

A new data type

A pointer stores a memory address

(i.e., it "points" to a location in memory)

Pointers are associated with a particular type

(e.g., a float pointer stores the address of a float)

Makes your life !!FUN!!

CIS241 | Fredericks | F25 | 33-c-pointers
2

New operators!

&var and *var

& - The "address of" operator

&var - returns the address of var

* - The dereference operator

When used on a pointer, returns the value at that memory address
This is "dereferencing" a pointer

CIS241 | Fredericks | F25 | 33-c-pointers
3

Why pointers?

Get an indirect reference to a variable

Have multiple variables point at the same location in memory

Point to a function that could be potentially swapped at run time

The starting point to a world of data structures

Linked lists, queues, etc.

CIS241 | Fredericks | F25 | 33-c-pointers
4

Declaring pointers

int *ptr;

char* my_pointer;

The * is key!

Can come before or after the space

CIS241 | Fredericks | F25 | 33-c-pointers
5

Assigning pointers

int x = 42;

int* p = ???

How to assign p to the memory address of x ?

CIS241 | Fredericks | F25 | 33-c-pointers
6

Assigning pointers

int x = 42;

int* p = &x;

But, how can we change the value of x using p ?

CIS241 | Fredericks | F25 | 33-c-pointers
7

Assigning pointers

int x = 42;

int* p = &x;

*p = 100;

CIS241 | Fredericks | F25 | 33-c-pointers
8

Printing pointers

Use %p for a pointer

Use the appropriate specifier for the value stored at a pointer

int x = 42;

int* p = &x;

printf("Pointer is: %p\n", p);
printf("Value is: %d\n", *p);

CIS241 | Fredericks | F25 | 33-c-pointers
9

Pointer arithmetic

int x = 42;

int* p = &x;
*p += 1;

The above code increments the value stored at p(x)

CIS241 | Fredericks | F25 | 33-c-pointers
10

Pointer arithmetic

int x = 42;

int* p = &x;
p += 1;

This code moves the pointer (p)
It moves based on the size of the type

E.g., if ints are 4 bytes, p now points 4 bytes later in memory

CIS241 | Fredericks | F25 | 33-c-pointers
11

Pointer arithmetic

Imagine I have four chars that happen to be stored sequentially in memory

char c1 = ‘G’;
char c2 = ‘V’;
char c3 = ‘S’;
char c4 = ‘U’;

G V S U

CIS241 | Fredericks | F25 | 33-c-pointers
12

Pointer arithmetic

char c1 = ‘G’;
char c2 = ‘V’;
char c3 = ‘S’;
char c4 = ‘U’;
char* p = &c1;

G V S U

What is the value of *(p+1) ?

V

CIS241 | Fredericks | F25 | 33-c-pointers
13

Some warnings

C doesn’t care

It will let you do all kinds of crazy stuff.

It is easy to do something other than what you intended

Pay attention to compiler warnings!

CIS241 | Fredericks | F25 | 33-c-pointers
14

RECAP

What does the following code do?

int i = 100; #0
int* p = &i; #1

i = i + 5; #2
*p += 6; #3

p += 1; #4
i--; #5
*p = *p * 2; #6

p--; #7
*p = 0; #8

CIS241 | Fredericks | F25 | 33-c-pointers
15

int i = 100; #0 i=100;
int* p = &i; #1

i = i + 5; #2
*p += 6; #3

p += 1; #4
i--; #5
*p = *p * 2; #6

p--; #7
*p = 0; #8

CIS241 | Fredericks | F25 | 33-c-pointers
16

int i = 100; #0 i=100;
int* p = &i; #1 i=100; p->i; *p=100;

i = i + 5; #2
*p += 6; #3

p += 1; #4
i--; #5
*p = *p * 2; #6

p--; #7
*p = 0; #8

CIS241 | Fredericks | F25 | 33-c-pointers
17

int i = 100; #0 i=100;
int* p = &i; #1 i=100; p->i; *p=100;

i = i + 5; #2 i=105; p->i; *p=105;
*p += 6; #3

p += 1; #4
i--; #5
*p = *p * 2; #6

p--; #7
*p = 0; #8

CIS241 | Fredericks | F25 | 33-c-pointers
18

int i = 100; #0 i=100;
int* p = &i; #1 i=100; p->i; *p=100;

i = i + 5; #2 i=105; p->i; *p=105;
*p += 6; #3 i=111; p->i; *p=111

p += 1; #4
i--; #5
*p = *p * 2; #6

p--; #7
*p = 0; #8

CIS241 | Fredericks | F25 | 33-c-pointers
19

int i = 100; #0 i=100;
int* p = &i; #1 i=100; p->i; *p=100;

i = i + 5; #2 i=105; p->i; *p=105;
*p += 6; #3 i=111; p->i; *p=111

p += 1; #4 i=111; p->&i+1;*p=?
i--; #5
*p = *p * 2; #6

p--; #7
*p = 0; #8

CIS241 | Fredericks | F25 | 33-c-pointers
20

int i = 100; #0 i=100;
int* p = &i; #1 i=100; p->i; *p=100;

i = i + 5; #2 i=105; p->i; *p=105;
*p += 6; #3 i=111; p->i; *p=111

p += 1; #4 i=111; p->&i+1; *p=?
i--; #5 i=110; p->&i+1; *p=?
*p = *p * 2; #6

p--; #7
*p = 0; #8

CIS241 | Fredericks | F25 | 33-c-pointers
21

int i = 100; #0 i=100;
int* p = &i; #1 i=100; p->i; *p=100;

i = i + 5; #2 i=105; p->i; *p=105;
*p += 6; #3 i=111; p->i; *p=111

p += 1; #4 i=111; p->&i+1; *p=?
i--; #5 i=110; p->&i+1; *p=?
*p = *p * 2; #6 i=110; p->&i+1; *p=?*2

p--; #7
*p = 0; #8

CIS241 | Fredericks | F25 | 33-c-pointers
22

int i = 100; #0 i=100;
int* p = &i; #1 i=100; p->i; *p=100;

i = i + 5; #2 i=105; p->i; *p=105;
*p += 6; #3 i=111; p->i; *p=111

p += 1; #4 i=111; p->&i+1; *p=?
i--; #5 i=110; p->&i+1; *p=?
*p = *p * 2; #6 i=110; p->&i+1; *p=?*2

p--; #7 i=110; p->i; *p=110
*p = 0; #8

CIS241 | Fredericks | F25 | 33-c-pointers
23

int i = 100; #0 i=100;
int* p = &i; #1 i=100; p->i; *p=100;

i = i + 5; #2 i=105; p->i; *p=105;
*p += 6; #3 i=111; p->i; *p=111

p += 1; #4 i=111; p->&i+1; *p=?;
i--; #5 i=110; p->&i+1; *p=?;
*p = *p * 2; #6 i=110; p->&i+1; *p=?*2;

p--; #7 i=110; p->i; *p=110;
*p = 0; #8 i=0 ; p->i; *p=0;

CIS241 | Fredericks | F25 | 33-c-pointers
24

Making connections

Can we do this?

int arr[3] = {5,6,7};
*arr = 20;
*(arr + 2) = 100;

YES!

CIS241 | Fredericks | F25 | 33-c-pointers
25

Can we do this?

int arr[3] = {5,6,7};
arr++;
*arr = 90;

NO! - Can't move arr

CIS241 | Fredericks | F25 | 33-c-pointers
26

Making connections

Can we do this?

int arr[3] = {5,6,7};
int* p = arr;
p++;
*p = 1000;

YES!

CIS241 | Fredericks | F25 | 33-c-pointers
27

Making connections

Can we do this?

int arr[3] = {5,6,7};
int* p = arr;
p[2] = 555;

YES!
p[2] is equivalent to *(p+2)

CIS241 | Fredericks | F25 | 33-c-pointers
28

Applying

What does the following code do?

long arr[3] = {0,0,0};
long* p = arr;

p[0] = 10;
*p += 10;
*(p + 1) = 9;
p += 2;
*p = 1;
p--;
*p -= 2;
p[0]--;

CIS241 | Fredericks | F25 | 33-c-pointers
29

Applying

What does the following code do?

long arr[3] = {0,0,0}; # { 0, 0, 0}
long* p = arr;

p[0] = 10;
*p += 10;
*(p + 1) = 9;
p += 2;
*p = 1;
p--;
*p -= 2;
p[0]--;

CIS241 | Fredericks | F25 | 33-c-pointers
30

Applying

What does the following code do?

long arr[3] = {0,0,0}; # { 0, 0, 0}
long* p = arr; # { 0, 0, 0} (p points at first)

p[0] = 10;
*p += 10;
*(p + 1) = 9;
p += 2;
*p = 1;
p--;
*p -= 2;
p[0]--;

CIS241 | Fredericks | F25 | 33-c-pointers
31

Applying

What does the following code do?

long arr[3] = {0,0,0}; # { 0, 0, 0}
long* p = arr; # { 0, 0, 0} (p points at first)

p[0] = 10; # {10, 0, 0}
*p += 10;
*(p + 1) = 9;
p += 2;
*p = 1;
p--;
*p -= 2;
p[0]--;

CIS241 | Fredericks | F25 | 33-c-pointers
32

Applying

What does the following code do?

long arr[3] = {0,0,0}; # { 0, 0, 0}
long* p = arr; # { 0, 0, 0} (p points at first)

p[0] = 10; # {10, 0, 0}
*p += 10; # {20, 0, 0}
*(p + 1) = 9;
p += 2;
*p = 1;
p--;
*p -= 2;
p[0]--;

CIS241 | Fredericks | F25 | 33-c-pointers
33

Applying

What does the following code do?

long arr[3] = {0,0,0}; # { 0, 0, 0}
long* p = arr; # { 0, 0, 0} (p points at first)

p[0] = 10; # {10, 0, 0}
*p += 10; # {20, 0, 0}
*(p + 1) = 9; # {20, 9, 0}
p += 2;
*p = 1;
p--;
*p -= 2;
p[0]--;

CIS241 | Fredericks | F25 | 33-c-pointers
34

Applying

What does the following code do?

long arr[3] = {0,0,0}; # { 0, 0, 0}
long* p = arr; # { 0, 0, 0} (p points at first)

p[0] = 10; # {10, 0, 0}
*p += 10; # {20, 0, 0}
*(p + 1) = 9; # {20, 9, 0}
p += 2; # {20, 9, 0} (p points at last)
*p = 1;
p--;
*p -= 2;
p[0]--;

CIS241 | Fredericks | F25 | 33-c-pointers
35

Applying

What does the following code do?

long arr[3] = {0,0,0}; # { 0, 0, 0}
long* p = arr; # { 0, 0, 0} (p points at first)

p[0] = 10; # {10, 0, 0}
*p += 10; # {20, 0, 0}
*(p + 1) = 9; # {20, 9, 0}
p += 2; # {20, 9, 0} (p points at last)
*p = 1; # {20, 9, 1}
p--;
*p -= 2;
p[0]--;

CIS241 | Fredericks | F25 | 33-c-pointers
36

Applying

What does the following code do?

long arr[3] = {0,0,0}; # { 0, 0, 0}
long* p = arr; # { 0, 0, 0} (p points at first)

p[0] = 10; # {10, 0, 0}
*p += 10; # {20, 0, 0}
*(p + 1) = 9; # {20, 9, 0}
p += 2; # {20, 9, 0} (p points at last)
*p = 1; # {20, 9, 1}
p--; # {20, 9, 1} (p points at middle)
*p -= 2;
p[0]--;

CIS241 | Fredericks | F25 | 33-c-pointers
37

Applying

What does the following code do?

long arr[3] = {0,0,0}; # { 0, 0, 0}
long* p = arr; # { 0, 0, 0} (p points at first)

p[0] = 10; # {10, 0, 0}
*p += 10; # {20, 0, 0}
*(p + 1) = 9; # {20, 9, 0}
p += 2; # {20, 9, 0} (p points at last)
*p = 1; # {20, 9, 1}
p--; # {20, 9, 1} (p points at middle)
*p -= 2; # {20, 7, 1}
p[0]--;

CIS241 | Fredericks | F25 | 33-c-pointers
38

Applying

What does the following code do?

long arr[3] = {0,0,0}; # { 0, 0, 0}
long* p = arr; # { 0, 0, 0} (p points at first)

p[0] = 10; # {10, 0, 0}
*p += 10; # {20, 0, 0}
*(p + 1) = 9; # {20, 9, 0}
p += 2; # {20, 9, 0} (p points at last)
*p = 1; # {20, 9, 1}
p--; # {20, 9, 1} (p points at middle)
*p -= 2; # {20, 7, 1}
p[0]--; # {20, 6, 1}

CIS241 | Fredericks | F25 | 33-c-pointers
39

What does this do?

int x = 0;
int y = 1;

int* p = &x;
*p = 5;

p = &y;
*p = 6;

At end, x=5 and y=6

CIS241 | Fredericks | F25 | 33-c-pointers
40

How about this?

int x = 0;
int* p = &x;
??? z = &p;

CIS241 | Fredericks | F25 | 33-c-pointers
41

How about this?

int x = 0;
int* p = &x;
int** z = &p;

You can have pointer of pointers! Wee!

More on this later

CIS241 | Fredericks | F25 | 33-c-pointers
42

