CIS241

System-Level
Programming and Utilities

C Pointers

Erik Fredericks, frederer@gvsu.edu
Fall 2025

Based on material provided by
Erin Carrier, Austin Ferguson,
and Katherine Bowers

e

mailto:frederer@gvsu.edu

Pointers

A new data type
A pointer stores a memory address
e (Il.e., It "points"” to a location in memory)
Pointers are associated with a particular type
e (e.g., a float pointer stores the address of a float)

Makes your life !IFuN!!

Ox7fffa0757dd4

Ox7fff98b499e8 4—— Address of pointer variable ptr

New operators!

Value of variable var (*ptr)

Ox7fffa0757dd4 44— Address of variable var (stored at ptr)
&var and *var

e & -The "address of" operator
o '&var - returns the address of var
e * -The dereference operator

o When used on a pointer, returns the value at that memory address
o This Is "dereferencing"” a pointer

Double Pointer

Pointer to Pointer to actual variable
pointer of var var with a value

l I I

ptr2 ptril var

: s o w0
W h y p o I n te rS ? address of > address of > addriss of

pointer pt2 pointer ptl

e Get an indirect reference to a variable

o Have multiple variables point at the same location in memory
e Point to a function that could be potentially swapped at run time
e The starting point to a world of data structures

o Linked lists, queues, etc.
Head

Data Next

Declaring pointers

int *ptr;
char* my_pointer;

The * is key!

e Can come before or after the space

Assigning pointers

Int X = 42;

int* p = ?2?27?

How to assigh p to the memory address of x ?

Assigning pointers

Int X = 42;

int* p = &x;

But, how can we change the value of x using p ?

Assigning pointers

Int X = 42;
int* p = &x;

*p = 100;

Printing pointers

Use %p for a pointer

Use the appropriate specifier for the value stored at a pointer
int X = 42;
int* p = &x;

printf("Pointer is: %p\n", p);
printf("Value is: %d\n", *p);

Pointer arithmetic

int X = 42;
int* p = &x;
po+=1;

The above code increments the value stored at p(x)

10

Pointer arithmetic

int X = 42;
int* p = &x;
p += 1;

This code moves the pointer (p)
It moves based on the size of the type

e E.g., If lints are 4 bytes, p now points 4 bytes later in memory

11

Pointer arithmetic

Imagine | have four chars that happen to be stored sequentially in memory

char c1 = ‘G’;
char c2 = ‘V';
char c3 = S’;
char c4 = ‘U’;

G V S U

Pointer arithmetic

char c1 = ‘G’;
char c2 = ‘V';
char c3 = S’;
char c4 = ‘U’;
char* p = &ci;

GV S U

What is the value of *(p+1) ?

oV

Some warnings

C doesn’t care
It will let you do all kinds of crazy stuff.
It is easy to do something other than what you intended

Pay attention to compiler warnings!

I don't care::'

14

RECAP

What does the following code do?

int 1 = 100; #0
int* p = &i; #1

1L = 1+ 5) #2
*p += 6, #3
p += 1; #4
1--; #5

P = *p * 2; #6

p--; #7
*p = 0; #8

1L = i & 5
po+= 65

p += 1;

i__.

p=tp * 2
p__

*p =0,

#0
#1

#2
#3

#4
#5
#6

#7
#8

1=100;

1L = i & 5
po+= 65

p += 1;

i__.

p=tp * 2
p__

*p =0,

#0
#1

#2
#3

#4
#5
#6

#7
#8

1=100;
1=100; p->1i;

*p=100,;

1L = i & 5
po+= 65

p += 1;

i__.

p=tp * 2
p__

*p =0,

#0
#1

#2
#3

#4
#5
#6

#7
#8

1=100;
1=100; p->i; *p=100;

1=105; p->i; *p=105;

1L = i & 5
po+= 65

p += 1;

i__.
p=tp * 2
p__

*p =0,

#0
#1

#2
#3

#4
#5
#6

#7
#8

1=100;
1=100; p->i; *p=100;

1=105; p->i; *p=105;
i=111; p->i; *p=111

1L = i & 5
po+= 65

p += 1;

i__.

p=tp * 2
p__

*p =0,

#0
#1

#2
#3

#4
#5
#6

#7
#8

1=100;
1=100;

1=105;
1=111;

1=111,

p->1; *p=100;

p->1; *p=105;
p->1; *p=111

p->&1+1; *p="

#0
#1

#2
#3

#4
#5
#6

#7
#8

1=100;
1=100;

1=105;
i=111;

i=111;
1=110;

p->1; *p=100;

p->1; *p=105;
p->1; *p=111

p->&i1+1; *p=7
p->&i+l; *p=?

#0
#1

#2
#3

#4
#5
#6

#7
#8

1=100;
1=100;

1=105;
i=111;

i=111;
1=110;
1=110;

p->1; *p=100;

p->1; *p=105;
p->1; *p=111

p->&i1+1; *p=7
p->&i+l; *p=?
p->&1+1; *p=?*2

1L = i & 5
po+= 65

p += 1;

i__.

p=tp * 2
p__

*p =0,

#0
#1

#2
#3

#4
#5
#6

#7
#8

1=100;
1=100;

1=105;
1=111;

1=111;
1=110;
1=110;

1=110;

p->1; *p=100;

p->1; *p=105;
p->1; *p=111
p->&i1+1; *p=7
p->&1+1; *p=7?
p->&1+1; *p=7*2

p->1i; *p=110

1L = i & 5
po+= 65

p += 1;

i__.

p=tp * 2
p__

*p =0,

#0
#1

#2
#3

#4
#5
#6

#7
#8

1=100;
1=100;

1=105;
1=111;

1=111;
1=110;
1=110;

1=110;
1=0 ;

Making connections

Can we do this?

int arr[3] = {5,6,7};
*arr = 20,
*(arr + 2) = 100;

e YES!

Can we do this?

int arr[3] = {5,6,7};
arr++;
*arr = 90,

e NO! - Can't move arr

26

Making connections

Can we do this?

int arr[3] = {5,6,7};
int* p = arr;

p++;

*P = 1000;

e YESI

27

Making connections

Can we do this?

int arr[3] = {5,6,7};
int* p = arr;
p[2] = 555;

e YES!
o 'p[2] Is equivalentto | *(p+2)

28

Applying

What does the following code do?

long arr[3] = {0,0,0},
long* p = arr;

ple] = 10;
p += 105
(p+1) =9
p += 2;
po=1;

p--;

po-=2;
pLO]--7

Applying

What does the following code do?

long arr[3] = {0,0,0}; # { 0, O, O}
long* p = arr;

p[e] = 10;
*p += 10;
(p+1) =09;
p += 2;
po=1;

p--;

po-=2;
p[O]--;

Applying

What does the following code do?

long arr[3] = {0,0,0}; # { 0, O, O}

long* p = arr; # { 0, 0, 0} (p points at first)
p[e@] = 10;

*p += 10,

*(p + 1) =9;

p += 2;

=1

p--;

po-= 25

plO]--;

Applying

What does the following code do?

long arr[3] = {0,0,0}; # { 0, O, O}

long* p = arr; # { 0, 0, 0} (p points at first)
p[Oo] = 10; # {106, 0, 0O}

*p += 10;

“(p + 1) = 9;

p += 2;

po=1;

P--

po-=2;

pLO]--;

Applying

What does the following code do?

long arr[3] = {0,0,0}; # { 0, O, O}

long* p = arr; # { 0, 0, 0} (p points at first)
p[0] = 10; # {10, 0, 0}

*p += 10; # {20, 0, 0}

*(p+1) = 9;

p += 2;

=1

p--;

po-= 25

plo]--;

Applying

What does the following code do?

long arr[3] = {0,0,0}; # { 0, O, O}

long* p = arr; # { 0, 0, 0} (p points at first)
p[0@] = 10; # {10, 0, 0}

*p += 10; # {20, 0, 0}

*(p +1) =9; # {20, 9, 0}

p+:2;

=1

p--;

po-= 25

plO]--;

Applying

What does the following code do?

long arr[3] = {0,0,0}; # { O,

long* p = arr;

p[@] = 10
*p += 10;
(p+ 1)
p += 2;
po=1;
p--;
po-=2;
p[O]--;

#

H H H H*

{0,

{10,
{20,
{20,
{20,

OO

~

(e l(eON O

~

0}
O} (p points at first)

0}
0}
0}
O} (p points at last)

Applying

What does the following code do?

long arr[3] = {0,0,0}; # { O,

long* p = arr;

p[@] = 10
*p += 10;
(p+ 1)
p += 2;
po=1;
p--;
po-=2;
p[O]--;

#

H o H H H

{0,

{10,
{20,
{20,
{20,
{20,

OO

~

~

~

© O O OO0

~

0}
O} (p points at first)

0}
0}
0}
O} (p points at last)
1}

Applying

What does the following code do?

long arr[3] = {0,0,0}; # { O,

long* p = arr;

p[@] = 10
*p += 10;
(p+ 1)
p += 2;
po=1;
p--;
po-=2;
p[O]--;

#

H H H H H

{0,

{10,
{20,
{20,
{20,
{20,
{20,

OO

~

~

~

~

© © O O oo

~

0}
O} (p points at first)

0}

0}

0}

O} (p points at last)
1}

1} (p points at middle)

Applying

What does the following code do?

long arr[3] = {0,0,0}; # { 0, O, O}

long* p = arr; # { 0, 0, 0} (p points at first)
p[0] = 10; # {10, 0, 0}

*p += 10; # {20, 0, 0}

*(p + 1) =9; # {20, 9, O}

p += 2; # {20, 9, 0} (p points at last)
*p = 1; # {20, 9, 1}

p--; # {20, 9, 1} (p points at middle)
*nD -= 2; # {20, 7, 1}

p[O]--;

Applying

What does the following code do?

long arr[3] = {0,0,0}; #

long* p = arr;

p[@] = 10
*p += 10;
(p+ 1)
p += 2;
po=1;
p--;
po-=2;
p[O]--;

#

H HHHHHHH

{0,
{0,

{10,
{20,
{20,
{20,
{20,
{20,
{20,
{20,

~

OO

~ ~

~

~ ~

~

ONO ©O O O OO0

~

0}
O} (p points at first)

0}

0}

0}

O} (p points at last)
1}

1} (p points at middle)
1}

1}

LOOK WHAT'I'CAN DO

What does this do?

int x = 0;
int y = 1;
int* p = &x;
p=5;

p = &y,

P =6;

e Atend, x=5 and y=6

40

How about this?

int x = 0;
int* p = &x;
?2?? z = &p;

41

inta=10; int *b = &a; int **c=&b;

How about this?

int x = 0;
int* p = &x;
int** z = &p;

You can have pointer of pointers! Wee!

e More on this later

