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Pointers

A new data type

A pointer stores a memory address

(i.e., it "points" to a location in memory)

Pointers are associated with a particular type

(e.g., a float pointer stores the address of a float)

Makes your life !!FUN!!
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New operators!

&var  and *var

&  - The "address of" operator

&var  - returns the address of var

*  - The dereference operator

When used on a pointer, returns the value at that memory address
This is "dereferencing" a pointer
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Why pointers?

Get an indirect reference to a variable

Have multiple variables point at the same location in memory

Point to a function that could be potentially swapped at run time

The starting point to a world of data structures

Linked lists, queues, etc.
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Declaring pointers

int *ptr;

char* my_pointer;

The *  is key!

Can come before or after the space
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Assigning pointers

int x = 42;

int* p = ???

How to assign p  to the memory address of x ?
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Assigning pointers

int x = 42;

int* p = &x;

But, how can we change the value of x  using p ?
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Assigning pointers

int x = 42;

int* p = &x;

*p = 100;
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Printing pointers

Use %p  for a pointer

Use the appropriate specifier for the value stored at a pointer

int x = 42;

int* p = &x;

printf("Pointer is: %p\n", p);
printf("Value is: %d\n", *p);
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Pointer arithmetic

int x = 42;

int* p = &x;
*p += 1;

The above code increments the value stored at p(x)
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Pointer arithmetic

int x = 42;

int* p = &x;
p += 1;

This code moves the pointer ( p )
It moves based on the size of the type

E.g., if ints  are 4 bytes, p  now points 4 bytes later in memory
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Pointer arithmetic

Imagine I have four chars that happen to be stored sequentially in memory

char c1 = ‘G’;
char c2 = ‘V’;
char c3 = ‘S’;
char c4 = ‘U’;

G V S U
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Pointer arithmetic

char c1 = ‘G’;
char c2 = ‘V’;
char c3 = ‘S’;
char c4 = ‘U’;
char* p = &c1;

G V S U

What is the value of *(p+1) ?

V
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Some warnings

C doesn’t care

It will let you do all kinds of crazy stuff.

It is easy to do something other than what you intended

Pay attention to compiler warnings!
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RECAP

What does the following code do?

int i = 100;   #0  
int* p = &i;   #1  

i = i + 5;     #2
*p += 6;       #3

p += 1;        #4
i--;           #5
*p = *p * 2;   #6

p--;           #7  
*p = 0;        #8
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int i = 100;   #0  i=100;
int* p = &i;   #1  

i = i + 5;     #2
*p += 6;       #3

p += 1;        #4
i--;           #5
*p = *p * 2;   #6

p--;           #7  
*p = 0;        #8
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int i = 100;   #0  i=100;
int* p = &i;   #1  i=100; p->i; *p=100;

i = i + 5;     #2
*p += 6;       #3

p += 1;        #4
i--;           #5
*p = *p * 2;   #6

p--;           #7  
*p = 0;        #8
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int i = 100;   #0  i=100;
int* p = &i;   #1  i=100; p->i; *p=100;

i = i + 5;     #2  i=105; p->i; *p=105;
*p += 6;       #3

p += 1;        #4
i--;           #5
*p = *p * 2;   #6

p--;           #7  
*p = 0;        #8
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int i = 100;   #0  i=100;
int* p = &i;   #1  i=100; p->i; *p=100;

i = i + 5;     #2  i=105; p->i; *p=105;
*p += 6;       #3  i=111; p->i; *p=111

p += 1;        #4
i--;           #5
*p = *p * 2;   #6

p--;           #7  
*p = 0;        #8
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int i = 100;   #0  i=100;
int* p = &i;   #1  i=100; p->i; *p=100;

i = i + 5;     #2  i=105; p->i; *p=105;
*p += 6;       #3  i=111; p->i; *p=111

p += 1;        #4  i=111; p->&i+1;*p=?
i--;           #5
*p = *p * 2;   #6

p--;           #7  
*p = 0;        #8
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int i = 100;   #0  i=100;
int* p = &i;   #1  i=100; p->i; *p=100;

i = i + 5;     #2  i=105; p->i; *p=105;
*p += 6;       #3  i=111; p->i; *p=111

p += 1;        #4  i=111; p->&i+1; *p=?
i--;           #5  i=110; p->&i+1; *p=?
*p = *p * 2;   #6

p--;           #7  
*p = 0;        #8
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int i = 100;   #0  i=100;
int* p = &i;   #1  i=100; p->i; *p=100;

i = i + 5;     #2  i=105; p->i; *p=105;
*p += 6;       #3  i=111; p->i; *p=111

p += 1;        #4  i=111; p->&i+1; *p=?
i--;           #5  i=110; p->&i+1; *p=?
*p = *p * 2;   #6  i=110; p->&i+1; *p=?*2

p--;           #7  
*p = 0;        #8

CIS241 | Fredericks | F25 | 33-c-pointers
22



int i = 100;   #0  i=100;
int* p = &i;   #1  i=100; p->i; *p=100;

i = i + 5;     #2  i=105; p->i; *p=105;
*p += 6;       #3  i=111; p->i; *p=111

p += 1;        #4  i=111; p->&i+1; *p=?
i--;           #5  i=110; p->&i+1; *p=?
*p = *p * 2;   #6  i=110; p->&i+1; *p=?*2

p--;           #7  i=110; p->i; *p=110
*p = 0;        #8
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int i = 100;   #0  i=100;
int* p = &i;   #1  i=100; p->i; *p=100;

i = i + 5;     #2  i=105; p->i; *p=105;
*p += 6;       #3  i=111; p->i; *p=111

p += 1;        #4  i=111; p->&i+1; *p=?;
i--;           #5  i=110; p->&i+1; *p=?;
*p = *p * 2;   #6  i=110; p->&i+1; *p=?*2;

p--;           #7  i=110; p->i; *p=110;
*p = 0;        #8  i=0  ; p->i; *p=0;
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Making connections

Can we do this?

int arr[3] = {5,6,7};
*arr = 20;
*(arr + 2) = 100;

YES!
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Can we do this?

int arr[3] = {5,6,7};
arr++;
*arr = 90;

NO! - Can't move arr
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Making connections

Can we do this?

int arr[3] = {5,6,7};
int* p = arr;
p++;
*p = 1000;

YES!
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Making connections

Can we do this?

int arr[3] = {5,6,7};
int* p = arr;
p[2] = 555;

YES!
p[2]  is equivalent to *(p+2)
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Applying

What does the following code do?

long arr[3] = {0,0,0};
long* p = arr;

p[0] = 10;
*p += 10;
*(p + 1) = 9;
p += 2;
*p = 1;
p--;
*p -= 2;
p[0]--;
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Applying

What does the following code do?

long arr[3] = {0,0,0}; # { 0, 0, 0}
long* p = arr;

p[0] = 10;
*p += 10;
*(p + 1) = 9;
p += 2;
*p = 1;
p--;
*p -= 2;
p[0]--;
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Applying

What does the following code do?

long arr[3] = {0,0,0}; # { 0, 0, 0}
long* p = arr;         # { 0, 0, 0} (p points at first)

p[0] = 10;
*p += 10;
*(p + 1) = 9;
p += 2;
*p = 1;
p--;
*p -= 2;
p[0]--;
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Applying

What does the following code do?

long arr[3] = {0,0,0}; # { 0, 0, 0}
long* p = arr;         # { 0, 0, 0} (p points at first)

p[0] = 10;             # {10, 0, 0}
*p += 10;
*(p + 1) = 9;
p += 2;
*p = 1;
p--;
*p -= 2;
p[0]--;

CIS241 | Fredericks | F25 | 33-c-pointers
32



Applying

What does the following code do?

long arr[3] = {0,0,0}; # { 0, 0, 0}
long* p = arr;         # { 0, 0, 0} (p points at first)

p[0] = 10;             # {10, 0, 0}
*p += 10;              # {20, 0, 0}
*(p + 1) = 9;
p += 2;
*p = 1;
p--;
*p -= 2;
p[0]--;
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Applying

What does the following code do?

long arr[3] = {0,0,0}; # { 0, 0, 0}
long* p = arr;         # { 0, 0, 0} (p points at first)

p[0] = 10;             # {10, 0, 0}
*p += 10;              # {20, 0, 0}
*(p + 1) = 9;          # {20, 9, 0}
p += 2;
*p = 1;
p--;
*p -= 2;
p[0]--;
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Applying

What does the following code do?

long arr[3] = {0,0,0}; # { 0, 0, 0}
long* p = arr;         # { 0, 0, 0} (p points at first)

p[0] = 10;             # {10, 0, 0}
*p += 10;              # {20, 0, 0}
*(p + 1) = 9;          # {20, 9, 0}
p += 2;                # {20, 9, 0} (p points at last) 
*p = 1;
p--;
*p -= 2;
p[0]--;
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Applying

What does the following code do?

long arr[3] = {0,0,0}; # { 0, 0, 0}
long* p = arr;         # { 0, 0, 0} (p points at first)

p[0] = 10;             # {10, 0, 0}
*p += 10;              # {20, 0, 0}
*(p + 1) = 9;          # {20, 9, 0}
p += 2;                # {20, 9, 0} (p points at last) 
*p = 1;                # {20, 9, 1}
p--;
*p -= 2;
p[0]--;
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Applying

What does the following code do?

long arr[3] = {0,0,0}; # { 0, 0, 0}
long* p = arr;         # { 0, 0, 0} (p points at first)

p[0] = 10;             # {10, 0, 0}
*p += 10;              # {20, 0, 0}
*(p + 1) = 9;          # {20, 9, 0}
p += 2;                # {20, 9, 0} (p points at last) 
*p = 1;                # {20, 9, 1}
p--;                   # {20, 9, 1} (p points at middle)
*p -= 2;
p[0]--;
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Applying

What does the following code do?

long arr[3] = {0,0,0}; # { 0, 0, 0}
long* p = arr;         # { 0, 0, 0} (p points at first)

p[0] = 10;             # {10, 0, 0}
*p += 10;              # {20, 0, 0}
*(p + 1) = 9;          # {20, 9, 0}
p += 2;                # {20, 9, 0} (p points at last) 
*p = 1;                # {20, 9, 1}
p--;                   # {20, 9, 1} (p points at middle)
*p -= 2;               # {20, 7, 1}
p[0]--;
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Applying

What does the following code do?

long arr[3] = {0,0,0}; # { 0, 0, 0}
long* p = arr;         # { 0, 0, 0} (p points at first)

p[0] = 10;             # {10, 0, 0}
*p += 10;              # {20, 0, 0}
*(p + 1) = 9;          # {20, 9, 0}
p += 2;                # {20, 9, 0} (p points at last) 
*p = 1;                # {20, 9, 1}
p--;                   # {20, 9, 1} (p points at middle)
*p -= 2;               # {20, 7, 1}
p[0]--;                # {20, 6, 1}
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What does this do?

int x = 0;
int y = 1;

int* p = &x;
*p = 5;

p = &y;
*p = 6;

At end, x=5  and y=6
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How about this?

int x = 0;
int* p = &x;
??? z = &p;

CIS241 | Fredericks | F25 | 33-c-pointers
41



How about this?

int x = 0;
int* p = &x;
int** z = &p;

You can have pointer of pointers! Wee!

More on this later
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