
Cloud Computing
History

CIS437
Erik Fredericks // frederer@gvsu.edu

Adapted from Google Cloud Computing Foundations, Overview of Cloud
Computing (Wufka & Canonico)

First, a thought-provoking
question

Why bother with the cloud?

From mainframes to cloud

Initially, computing was handled via dumb
terminals and a central server

- Meaning, your terminal couldn't do anything

- All the work was handled by some remote
system

 - Sound familiar?

What are some possible disadvantages to
mainframes?

What are some possible
disadvantages to mainframes?

- I/O limited

 - Punch card readers

 - One user allowed at any given time

 - CPU can't do anything during I/O

Also, they were huge

Multi-user systems

 First, multi-user I/O

- Or, more than one user can do things at a time

- Then, time sharing
- Multiple programs active in memory
- OS handles active 'time slices'
- We'll leave that to your OS class

 - Then, PCs and C/S

Personal computers

i.e., what you're using now

● GASP

Pre-recent years, could others login and use your computer?

What about now - can somebody remote in and use your machine?

- If so, how?

Regardless, history you probably already knew about

- What about client/server (C/S)?

(a small number of 373 slides if you don't mind)

(also, pretty cool class imo)

Client/server

Peer-to-peerServer

“I want to
access
some

information”

“I want to
collaborate

with my
colleague”

Client

Architecture types

Client-server

● Asymmetric relationship
● Client makes requests, server makes replies

Peer-to-peer (P2P)

● Symmetric relationship

Client/Server Types???

Simple client-server

Server invoked by another server

Multiple servers

Client-Server Interaction

Discussion

In order to make client-server model work,

- What information should the server know from the client?

- What information should the client know from the server?

Discussion

In order to make client-server model work:

What information should the server know from the client?

- The server does not need to know the existence or address of the client prior
to the connection.

- Just keep running for incoming connections from clients

What information should the client know from the server?

- The client needs to know the existence and the address of the server.

Chat application

Client

Server

Client

Chat clients send
user’s typing to
server

Chat server
aggregates
typing from all
users and sends
to all clients

Other user’s
clients display
aggregated
typing from chat
server

Client/Server (again)

Three-tier client/server

Client

Application
server

Data
server

Local-area network

Note: many clients per
application server, several
application servers per data
server

Client/Server (3)

A Service by Multiple Servers

Could move computations to client → but what is wrong with this?

Does the server check? Client check? Both?

Client/Server (4)

Client/Server → Limitations

- Scalability is hard to achieve

- Presents a single point of failure

- Requires administration

- Unused resources at the network edge (client side)
- CPU cycles, storage, etc.
- P2P systems try to address these limitations

Peer-to-Peer (P2P)

What is it?

Use the vast resources of machines at the edge of the Internet to build a network
that allows resource sharing with limited central authority

More than a system for sharing pirated music/movies!

P2P architecture

P2P - Characteristics
Exploit edge resources.

- Storage, content, CPU, human presence

Significant autonomy from any centralized authority

- Each node can act as a Client as well as a Server

Resources at edge have intermittent connectivity

- Constantly being added & removed
- Infrastructure is untrusted and the components are unreliable

P2P - Overlay network

A P2P network is an overlay network

- Each link between peers consists of one or more IP links

P2P - Why talk about it?

Can do IoT in the cloud!

Because of course there's a solution for it in the cloud providers

https://cloud.google.com/iot-core/

https://cloud.google.com/iot-core/

At least it is still active over on AWS…

https://docs.aws.amazon.com/iot/latest/developerguide/what-is-aws-iot.html

https://docs.aws.amazon.com/iot/latest/developerguide/what-is-aws-iot.html

Grid computing

Networked heterogeneous resources

- Offload processing to devices on the
grid

- Can be geographically distributed

What could be an issue with different
types of devices?

- What is a positive?

1. Control Node: Computer (Server / Group
of Servers) which administers the whole
network and keeps account of the
resources in the network pool

2. Provider Node: Computer which provides
its resources to the network resource pool

3. User Node: Computer which uses the
resources of the network

https://blog.mi.hdm-stuttgart.de/index.php/2023/0
6/06/are-grids-dead/

https://blog.mi.hdm-stuttgart.de/index.php/2023/06/06/are-grids-dead/
https://blog.mi.hdm-stuttgart.de/index.php/2023/06/06/are-grids-dead/

Virtualization

Run multiple machines / operating systems on a
single system

- Independently and concurrently
- Multiple users each log into their own VM

Why virtualization?

Consider an enterprise data center

- Always need more servers!
- Easier to virtualize workstations/servers
- Cost-effective
- Less hardware to deal with
- Easy to configure and deploy

Basics
Operating systems generally assume that they are in control

- HAHAHHAHAAHA
- Why though? What happens if two OSs try to use the same hardware?

Virtualization used to address this problem

- Virtualize hardware to support multiple OSs
- Abstraction of computing resources

Full virtualization currently accepted as the norm

- OS is “unaware” that it is virtualized and thinks its hardware is real
- Hypervisor mediates between VM and real hardware

- Hypervisor: virtual machine monitor

https://www.bleepi
ngcomputer.com/n
ews/microsoft/aug
ust-windows-secur
ity-update-breaks-
dual-boot-on-linux-
systems/

https://www.bleepingcomputer.com/news/microsoft/august-windows-security-update-breaks-dual-boot-on-linux-systems/
https://www.bleepingcomputer.com/news/microsoft/august-windows-security-update-breaks-dual-boot-on-linux-systems/
https://www.bleepingcomputer.com/news/microsoft/august-windows-security-update-breaks-dual-boot-on-linux-systems/
https://www.bleepingcomputer.com/news/microsoft/august-windows-security-update-breaks-dual-boot-on-linux-systems/
https://www.bleepingcomputer.com/news/microsoft/august-windows-security-update-breaks-dual-boot-on-linux-systems/
https://www.bleepingcomputer.com/news/microsoft/august-windows-security-update-breaks-dual-boot-on-linux-systems/
https://www.bleepingcomputer.com/news/microsoft/august-windows-security-update-breaks-dual-boot-on-linux-systems/

Full virtualization
Also called “bare-metal” hypervisors

Hypervisor controls physical hardware
- Provides layer of emulation
- OS thinks it’s making calls to real

hardware
- Most secure approach

- Any/all calls are intercepted by
hypervisor

- What happens in the VM stays in the
VM

(Will leave other types to your OS/sysadmin classes)
But we'll talk a bit about this one →

OS-level virtualization (containerization)

- Rather than virtualizing OS, virtualize
application environment instead!

- Also referred to as
containers/containerization

- No translation/virtualization layer
- Kernel isolates processes from rest of

system
- Processes share kernel and other

services of host OS, but cannot access
files/resources outside of container

Key features

Isolation

- Programs run in their separate little space
- In theory, cannot bleed over to other VMs

Encapsulation

- State of machine localized to file on disk

Compatibility

- VM decoupled from bare metal
- Can run whatever OS you want!

Just somebody else's server?

- Well yes, but also no

Somebody else's server,

- and data lake(s)...
- and geographically distributed…
- and networked

Abstraction on top of virtualization

And then, the cloud

What about high-performance computing (HPC)

 If you are doing research, we have CLIPPER here…

https://services.gvsu.edu/TDClient/60/Portal/KB/ArticleDet?ID=19607

There's also iCER at MSU

https://services.gvsu.edu/TDClient/60/Portal/KB/ArticleDet?ID=19607

What about high-performance computing (HPC)

 If you are doing research, we have CLIPPER here…

https://services.gvsu.edu/TDClient/60/Portal/KB/ArticleDet?ID=19607

There's also iCER at MSU

https://services.gvsu.edu/TDClient/60/Portal/KB/ArticleDet?ID=19607

Relationship to what we're talking about?

Well, we're at the end, yet this is more of a 'fun fact'

- Grid computing and HPC very similar, and I'm sure academics will argue about
semantic differences

- Used interchangeably

HOWEVER

- Grid/HPC != cloud

Grid/HPC = performance

Cloud = scalability

https://cloudscaling.com/blog/cloud-computing/grid-cloud-hpc-whats-the-diff/

https://cloudscaling.com/blog/cloud-computing/grid-cloud-hpc-whats-the-diff/

Something HPC/Grid you could do at home?

(i.e., if you wanted to learn about managing a cluster)

(don't use this for real workloads - you'll get better performance off an

 old laptop)

(you could probably also install cloud software

on something like this too)

Raspberry Pi Bramble

 (or your favorite microcomputer networked…)

Could you do grid computing / HPC in the cloud?

How?

…is it tenable/worthwhile?

Assuming it still works (cough), we'll do a little demo of this when we hit apps

https://cloud.google.com/cluster-toolkit/docs/overview

Also, $$$

https://cloud.google.com/cluster-toolkit/docs/overview

Cloud history

Essentially, has become a fight between the big three

In terms of history:

- AWS was the first to market (~2006)
- Internal/preview services available sooner

- Google Cloud and Microsoft not far behind
- Google (App Engine, ~2008)
- Microsoft (Windows Azure, ~2008)

- Each offer similar services and there really isn't
one killer feature that a single provider offers

In-Class Work

IC2 - JavaScript Frameworks in Cloud Shell (in Blackboard)

Experience with:

1) Cloud Shell
2) The "fun" of JavaScript frameworks
3) The "fun" of forced in-class work :D

