

Cloud Computing Cloud Applications

CIS437 Erik Fredericks // frederer@gvsu.edu

A question

What makes a cloud application different from a normal application?

And further

Are there different types of cloud applications?

Limitations of "local" apps

...remember the advantages of cloud computing?

- Fault tolerance
- Scalability
- Networking
- Federation
- Computing at scale

First, some things to consider before we dip into *aaS

APIs Availability zones Fault tolerance Migration Monitoring Federation Elasticity Architectures

i.e., important things to consider in your cloud app

WHAT IS A REST API?

APIs

What is an API (other than something we'll talk about more when we go over serverless/microservices)?

A method for accessing services programmatically

- Could be a human or a program!

Why important to cloud?

- Ability to write code to automate everything in the cloud!

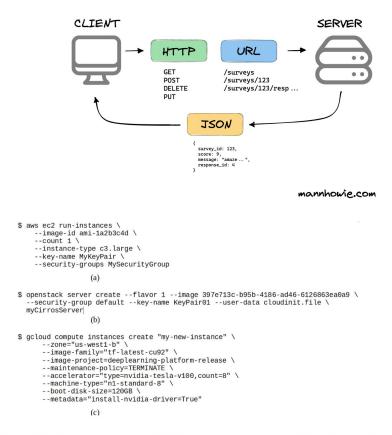
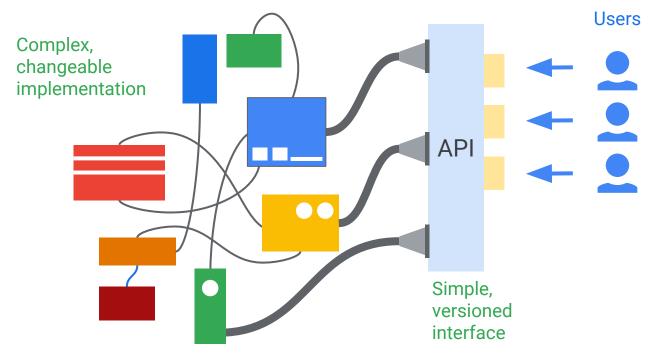
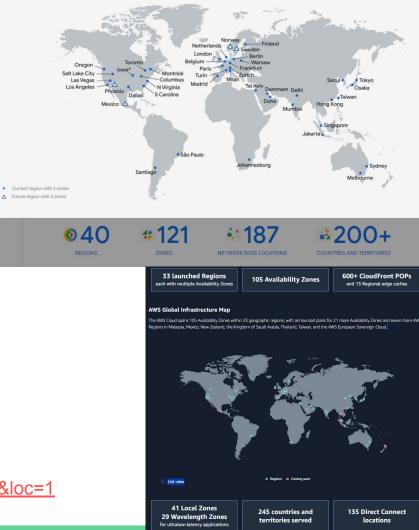



Figure 3.1: How to run a new VM by using the command-line client software provided by (a) AWS, (b) OpenStack and (c) GCP respectively.

APIs hide the details and enforce contracts

Copyright Google LLC. For educational purposes in accordance with the terms of use set forth on the program Website.

Availability zones


or, where does your provider have service?

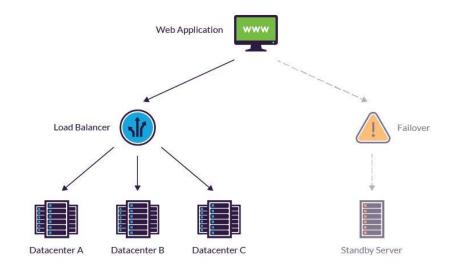
Compute/serve near your client

- Faster delivery / quality of service

Regions can have multiple zones as well!

https://cloud.google.com/about/locations#lightbox-regions-map https://aws.amazon.com/about-aws/global-infrastructure/?p=ngi&loc=1

Fault tolerance


There are a lot of resources available

- What do we do if one fails?
 - e.g., a virtual machine crashes, or a zone goes down

Services need to be configured to *fail nicely*

- E.g., a mirror picks up the slack (failover)
 - Another instance is automatically spun up
 - etc.

Could be provided automatically by the provider or configured by the designer

Migration

May need to move from one service to another

- E.g., one VM needs to be moved to another
 - Because of availability, new services, etc.

Hot (live) migration

- Services still "on" while migration happens

Cold migration

- Services "off" while migration happens

Monitoring

KEEPIN' AN EYE ON THINGS

- Why on earth would we want to monitor our services?
- What can we do if _ things go wrong?

	Google Cloud Monitoring Infrastructure	* Services * Alerting * Groups *	Dashboards 👻	All Resources Help 👻 Dan 🕅
	Services / Task Queues @		Q C O TIME	custom 1h 6h 1d 1w 1m 6w 🚦 🧮 🗮 Filter 🛛 🔍
	OPEN (0) ACKNOWLEDGED (0) RESOLVED (0)		3 PM 3:30	4 PM 4:30 5 PM
	No open incidents		Tasks Executed	≡ 01 1
	Event Log ø	Filter Add Event		
	No events matching this criteria		1-1-4-1-1/1/4	
	Inventory			
	HEALTH - NAME		0.98/s addcomments:Executed Feb 13,	2015 3:02:06 PM [UTC -0500]
	addcomments		Failed Tasks	≡ 03 :
	process Showing 1 to 2 of 2 Task Queues			
			hand	W 444444444444444
Google Develope				
			Execution Delay	≡ α :
< Projects			1	
				-27.8h
Cloud Logs Test Pr			I	
Overview	Filter by label or text search			
Permissions	Compute Engine 👻	All resource types * All re	esource IDs - All log	s · Any log level ·
Billing & settings	Compute Engine	Airesource types	Airiog	
APIs & auth	2015-03-16			
APIs	▶ ★ mju-ubuntu	16:17:01.000 Max	r 16 20:17:01 mju-ub	untu CRON[12485]: (root) CMD (c
Credentials	logging-docs	16:17:01.000 Max	r 16 20:17:01 loggin	g-docs /USR/SBIN/CRON[15611]: (r
Consent screen	logging-docs	17:17:01.000 Mai	r 16 21:17:01 loggin	g-docs /USR/SBIN/CRON[16577]: (1
Push	▶ 💌 mju-ubuntu	18:17:01.000 Man	r 16 22:17:01 mju-ub	untu CRON[14487]: (root) CMD (c
Monitoring	logging-docs	18:17:01.000 Man	r 16 22:17:01 loggin	g-docs /USR/SBIN/CRON[17530]: (1
Traces	▶ 💌 mju-ubuntu	19:17:01.000 Man	r 16 23:17:01 mju-ub	untu CRON[15595]: (root) CMD (c
Logs	logging-docs	19:17:01.000 Max	r 16 23:17:01 loggin	g-docs /USR/SBIN/CRON[18660]: (1
Dashboards & alerts	▶ 💌 mju-ubuntu	20:17:01.000 Man	r 17 00:17:01 mju-ub	untu CRON[16598]: (root) CMD (c
	logging-docs	20:17:01.000 Man	r 17 00:17:01 loggin	g-docs /USR/SBIN/CRON[19754]: (1
Source Code	▶ 💌 mju-ubuntu	21:17:01.000 Man	r 17 01:17:01 mju-ub	untu CRON[17561]: (root) CMD (c
Compute	Iogging-docs	21:17:01.000 Max	r 17 01:17:01 loggin	g-docs /USR/SBIN/CRON[20717]: (1

AC

Federation

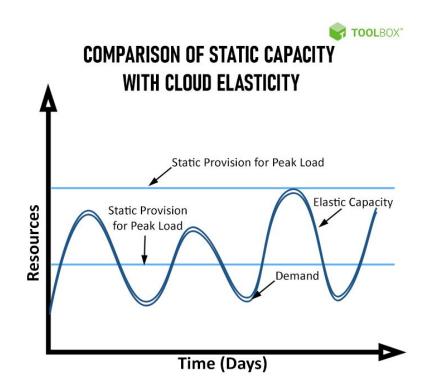

Interoperability of different providers

Think:

- Microsoft Active Directory
- Mastodon / Lemmy

Is this ... something that most cloud providers allow?

What do you think "lock-in" means?


Elasticity

This is what gives us scalability

- Detect if workloads are too high and scale up/down as needed
- Relies on monitoring and automated triggering!

Think of your programs you've made so far though...

 How in the world could you automatically scale them up/down at run time?

Architecture

"Common" (from the book)

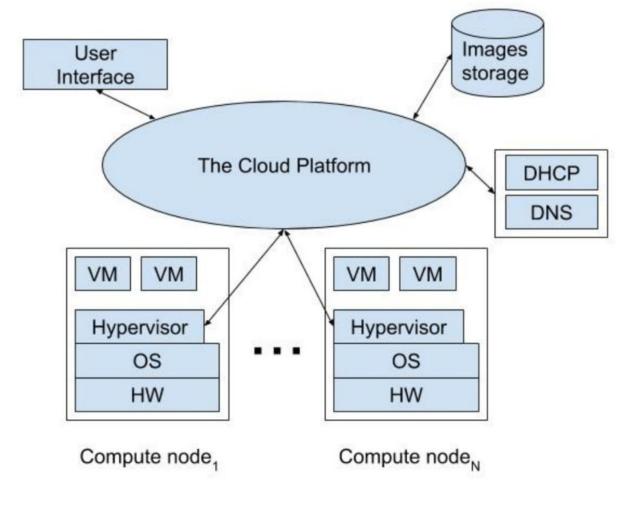
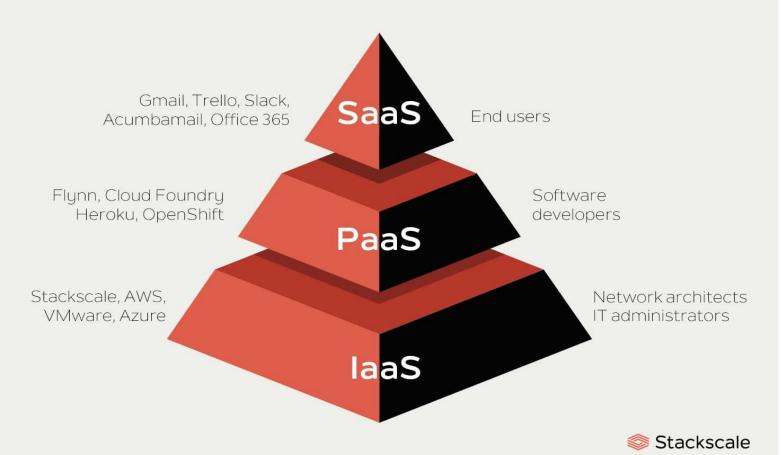
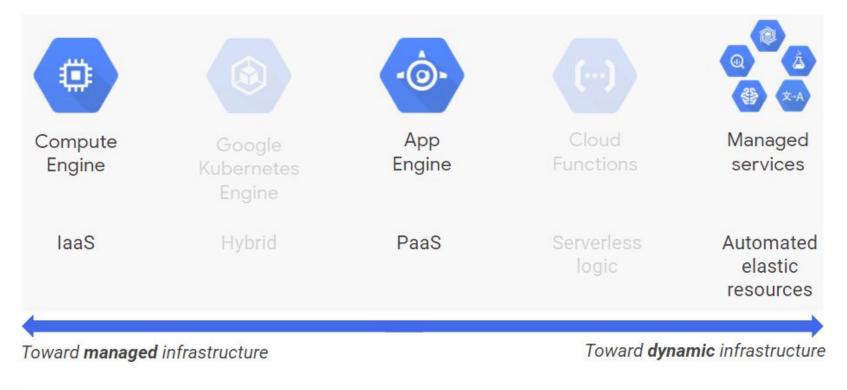


Figure 3.2: The common cloud platform architecture.

Many different types, but typically three tiers of apps


* as a service

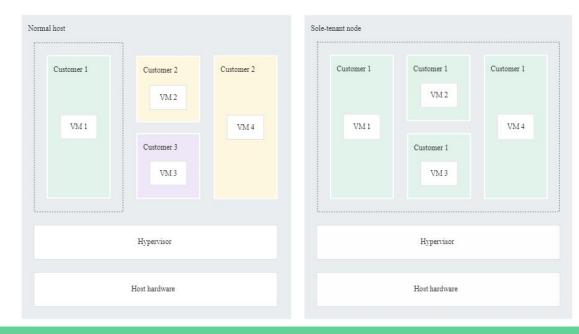
- Infrastructure as a service (laaS)
- Platform as a service (PaaS)
- Software as a service (SaaS)


Interestingly, there will typically be some cloud product that aligns with each of these

- Or some combination

Cloud service models

Google Cloud provides a variety of choices



Copyright Google LLC. For educational purposes in accordance with the terms of use set forth on the program Website.

laaS

Typically virtual machines

- Meaning, the infrastructure is virtualized
 - Don't need a server "on-prem"

laaS

Things to consider for the VM:

- Machine type/specs
- Operating system
- Who has access
- Fresh install vs. template

Other considerations:

- Firewalls (internal and external!)
- Scaling (elasticity)
- Location
- Price!
 - Use vs. storage

laaS

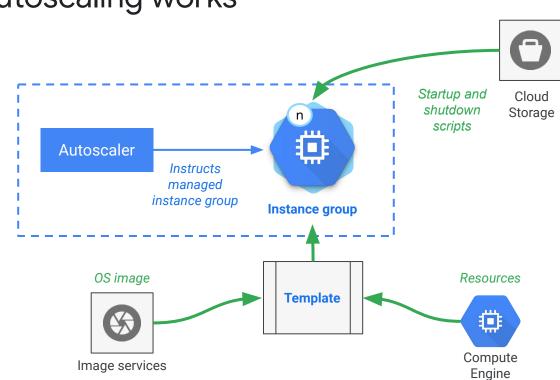
What are some sample use cases?

Autoscaling Google Compute Engine

https://cloud.google.com/compute/docs/autoscaler

Uses "managed instance groups"

- Auto add/delete instance from groups as needed

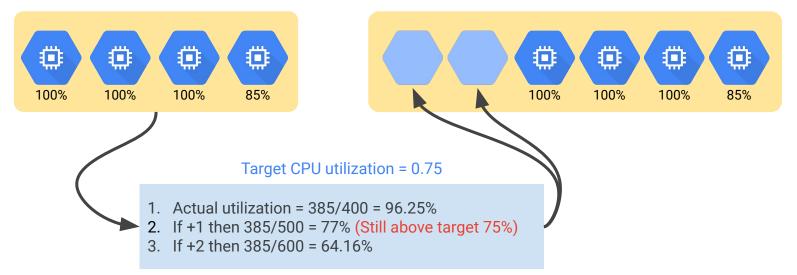

Requires:

- Autoscaling service agent
- A policy (metrics to look for)
 - CPU usage
 - Load balancing
 - Etc.

Create a managed instance group (MIG)

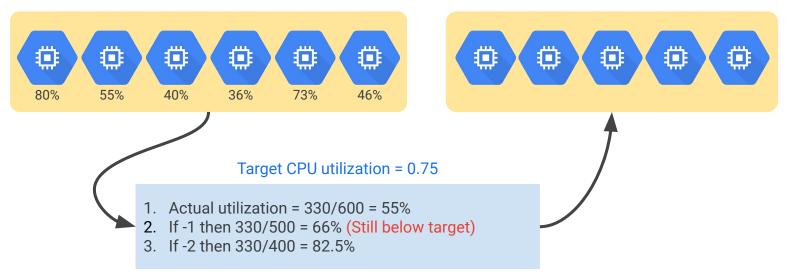
A <u>managed instance group (MIG)</u> ^[2] is a group of virtual machine (VM) instances that you control as a single entity. MIGs support features such as autohealing, autoscaling, load balancing, multiple zone coverage, and stateful workloads.

> Quickstart tutorial in VM creation



How autoscaling works

Scale-out policy decision


managed instance group

Scale-in policy decision

managed instance group

Autoscale demo

https://codelabs.developers.google.com/codelabs/hpc-slurm-on-gcp#0

(Interestingly, Slurm is what runs on GVSU's HPC environment) - And many others...

Notes:

- Create new project
- Pull this instead: https://github.com/GoogleCloudPlatform/slurm-gcp
- Look in here for the tfvars:

slurm-gcp/terraform/slurm_cluster/examples/slurm_cluster/simple_cloud

ааааааАААААААААААААААААААААНННН

Well Slurm is at least fun let's try THAT out

https://cloud.google.com/cluster-toolkit/docs/quickstarts/slurm-cluster

srun -N 3 hostname

This command creates three compute nodes for your HPC cluster. This may take a minute while Slurm auto-scales to create the three nodes.

D:

When the job finishes you should see an output similar to:

\$ srun -N 3 hostname hpcslurm-debug-ghpc-0 hpcslurm-debug-ghpc-1 hpcslurm-debug-ghpc-2

Proof in case it broke again

					Mozilla	a Firefox						_ ×
○ 읍 ≕	🗔 https		id.google.com/								ur 🖒	≡
 Firefox 	prevented	this site fr	om opening a p	oop-up windov	N. <u>P</u> r	eferences						×
SSH	-in-brow	ser) FILE	▲ DOWNLOAD FILE	<u>p</u>	•	\$
S S	S SSS S	SSS SSSSS SSSS SSS SSS SSS SSS	SSSSSSS SSSSSSS SSSS	SSSSSSSS SSSSSSSS SSSSSSS	ss ss	SSSSS SSSSS SSSS	555 55555 55555 555	S SSS S	S S			
Rect	sssss ssss	SSS SSS SSS SSS SSS SSS SSS SSS SSS	SSSS SSSS SSSS SSSS SSSS SSSS SSSS SSSS	SSSS SSSS SSSS SSSS SSSS SSSS SSSS SSSS	SSSSS SSSSS SSSS SSSS SSSS SSSS SSSS SSSS				SSSS SSSS			-
[erik_fr	SSSSS SSSS direct ederick	SSS SSS cory '/ cs_gmai TIME TIME inf	SSSSSSSSS SSSSSSSS home/erik_ l_com@hpcs LIMIT NOD inite inite inite inite	SSSSSSS SSSSS frederick lurm-slun ES STATE 20 idle- 4 idle-	SSSS SSSS (s_gmai rm-logi E NODEL - hpcs] - hpcs]	LN-001 IST Lurm-co Lurm-do	SSSS SSSS	SSSS SSSS o leset- set-[0	SSSS SSSS [0-19] -3]			

•

•

VM instances

= Filter Enter property name or value

Status	Name 🛧	Zone	Reco
	hpcslurm-controller	us-central1-a	0
	hpcslurm-debugnodeset-0	us-central1-a	
•	hpcslurm-debugnodeset-1	us-central1-a	*
•	hpcslurm-debugnodeset-2	us-central1-a	1
	hpcslurm-slurm-login-001	us-central1-a	0

ň

PaaS

Before we didn't worry about the bare-metal hardware

- Now we don't worry about that **plus** the operating system/environment!
- i.e., a serverless approach

i.e., we just want to deploy a Python app and don't care about the server itself

Google Cloud- App Engine / Cloud FunctionsAWS- App Runner / LambdaAzure- Azure PaaS / Azure Functions

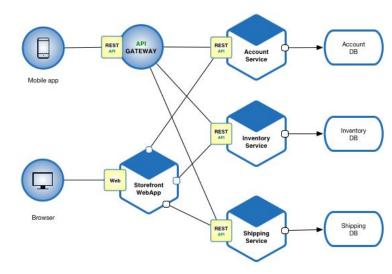
(there are more - just these are common)

PaaS Demo!

This one's pretty straightforward - basic website with App Engine

https://cloud.google.com/appengine/docs/standard/hosting-a-static-website

Buuut,


- Gets us to YAML (get ready for pain and suffering)

Functions as a Service (FaaS)

Less common in marketing materials, but here:

- Functions deployed remotely without a care for the app *as a whole*
- i.e., I am calling a function as an API
 - Part of the serverless paradigm, so still PaaS
- Lambda / Cloud Functions / Azure Functions also apply here

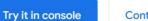
What are some sample use cases?

We'll be going into greater detail on these later

SaaS

Don't care about the hardware

- Or the operating system
- Or the installation!


Think: Google Docs, Office 365, etc.

And now ... MaaS

Al and machine learning products

Try Gemini 1.5 models, the latest and most advanced multimodal models in Vertex AI. See what you can build with up to a 2M token context window, starting as low as \$0.0001.

Contact sales

Summarize large documents with generative AI

Deploy a preconfigured solution that uses generative AI to quickly extract text and summarize large documents.

Deploy an Al/ML image processing pipeline

Launch a preconfigured, interactive solution that uses pre-trained machine learning models to analyze images and generate image annotations.

Create a chat app using retrievalaugmented generation (RAG)

Deploy a preconfigured solution with a chatbased experience that provides questions and answers based on embeddings stored as vectors.

 \rightarrow

Ok, so we have the various *aaS

Things **you** need to take away from this:

- 1) If you have a need, there's probably a solution out there
- 2) Know **what** technology to use for **which** problem

FOR EXAMPLE - WHAT TECH CAN YOU USE?

- 1) I need you to build a website for our company
- 2) I need you to create a backend service so our users can purchase products from the online store
- 3) I need you to create a chatbot because [expletive deleted] every website needs a chatbot now

Let's take a look at laaS for a moment

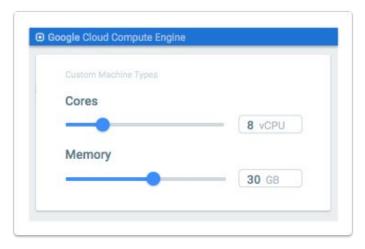
Where Compute Engine fits within Google Cloud

		()	
Compute Engine	App Engine	Cloud Functions	Google Kubernetes Engine
laaS	PaaS	Serverless logic	Hybrid
Virtual machines with industry-leading price/performance	A flexible, zero ops platform for building highly available apps	A lightweight fully managed serverless execution environment for building and connecting cloud services	Cluster manager and orchestration engine built on Google's container experience

Compute Engine is an infrastructure-centric solution

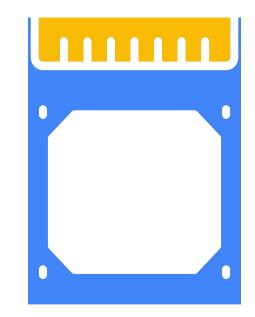
- Type of laaS
- Scalable, high-performance VMs
- Run any computing workload
- Predefined or custom machine types
- Windows or Linux
- No upfront investment required

Create VMs that are right for your workloads


Machine type options to consider:

- Higher proportion of memory to CPU
- Higher proportion of CPU to memory
- Blend of both

Select from predefined VM configurations:


- General-purpose
- Memory-optimized
- Compute-optimized

Customize your own configuration


Building virtual disks

- Network storage can be attached to VMs as persistent disks (PDs).
- PDs are cost-effective, durable, and offer good performance.
- Local SSDs provide higher performance with lower latency, but exist only for the lifetime of a specific instance.
- Standard PD throughput performance and IOPS increases linearly with the size of the disk until it reaches set per-instance limits.
- SSD PD IOPS performance depends on the number of vCPUs in the instance in addition to disk size.

Networks connect Compute Engine instances to each other and to the internet

- Inbound/outbound firewall rules
- Create static routes
- Scale and distribute applications using Cloud Load Balancing
- Global and multi-regional subnetwork

Compute Engine pricing

Google Cloud Platform Pricing Calculator

COMPUTE ENGINE APP ENGINE KUBERNETES CLOUD RUN CLOUD RUN NETWORKING BIOQUERY BIOQUERY BIOQUERY	Y ML C DAT	
earch for a product you are interested in.		
nstances		
Aumber of Instances * 5	?	
Vhat are these instances for?	?	
perating System / Software	2	
Free: Debian, CentOS, CoreOS, Ubuntu, or other User Provided OS 🔹		
Machine Class Preemptible		
Aachine Family		
▼ ¥		
Aachine Generation		
Aachine type		
n2-standard-2 (vCPUs: 2, RAM: 8GB) 🔹	?	

Estimate	
Compute Engine	
5 x Databases	/ 😣
3,650 total hours per month	
VM class: preemptible	
Instance type: n2-standard-2	
Region: Iowa	
Total available local SSD space 1x3	375 GB
Estimated Component Cost: USD 1	175.77 per 1 month
fotal Estimated Cost: USD 175.7	77 per 1 month
Estimate Currency	
USD - US Dollars	

https://cloud.google.com/products/calculator/

Copyright Google LLC. For educational purposes in accordance with the terms of use set forth on the program Website.

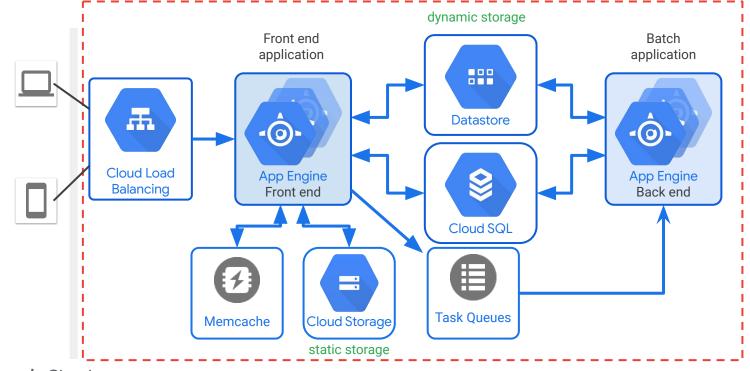
and now PaaS

Where App Engine fits within Google Cloud

		()	
Compute Engine	App Engine	Cloud Functions	Google Kubernetes Engine
laaS	PaaS	Serverless logic	Hybrid
Virtual machines with industry-leading price/performance	A flexible, zero ops platform for building highly available apps	A lightweight fully managed serverless execution environment for building and connecting cloud services	Cluster manager and orchestration engine built on Google's container experience

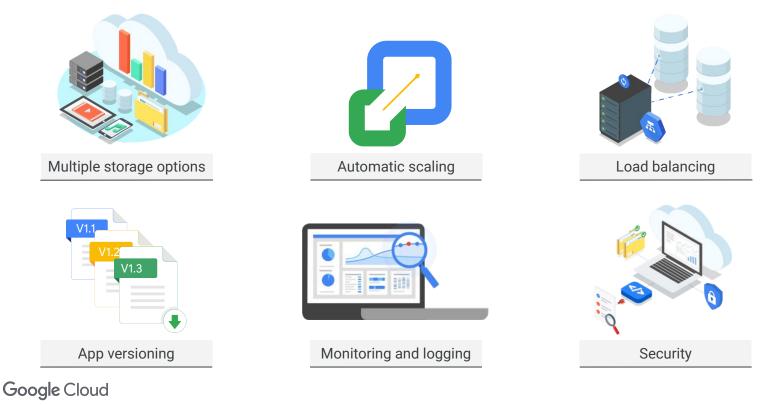
App Engine is a platform-centric solution

- Type of PaaS
- No need to buy, build, or operate hardware/infrastructure
- No managing servers or configuring deployments
- Focus on app development instead of operations
- Use a range of languages and tools
- Automatic scaling



App Engine offers two different environments

Standard environment	Flexible environment
Fully-managed	Docker container support
Scale to zeroSpecific versions of supported languages	VMs exposedAny language in your container
 Changes/configuration limited 	 More options for infrastructure customization and configuration for performance


An App Engine architecture example

🔼 Google Cloud

Copyright Google LLC. For educational purposes in accordance with the terms of use set forth on the program Website.

App Engine addresses the key needs of developers

SaaS

https://youtu.be/WJmP4Lqopps

- (Important bit? What tools/tech to use to build the "thing" you want)

https://cloud.google.com/saas

- Tends to be 'install trusted plugin from Marketplace'

Another demo!

https://developers.google.com/codelabs/gcp-marketplace-saas#0 <appears broken>

Let's do a PHP app! Different than what we've done so far <u>https://cloud.google.com/appengine/docs/standard/php-gen2/building-app</u>