
Cloud Computing
Design Patterns

CIS437
Erik Fredericks // frederer@gvsu.edu

Adapted from Google Cloud Computing Foundations, Overview of Cloud 
Computing (Wufka & Canonico) 



Design patterns for cloud apps!

https://github.com/mehdihadeli/awesome-software-architecture/blob/main/docs/clo
ud-design-patterns/cloud-design-patterns.md

https://docs.aws.amazon.com/prescriptive-guidance/latest/cloud-design-patterns/in
troduction.html

https://www.techtarget.com/searchcloudcomputing/tip/5-cloud-design-patterns-to-c
reate-resilient-applications 

https://github.com/mehdihadeli/awesome-software-architecture/blob/main/docs/cloud-design-patterns/cloud-design-patterns.md
https://github.com/mehdihadeli/awesome-software-architecture/blob/main/docs/cloud-design-patterns/cloud-design-patterns.md
https://docs.aws.amazon.com/prescriptive-guidance/latest/cloud-design-patterns/introduction.html
https://docs.aws.amazon.com/prescriptive-guidance/latest/cloud-design-patterns/introduction.html
https://www.techtarget.com/searchcloudcomputing/tip/5-cloud-design-patterns-to-create-resilient-applications
https://www.techtarget.com/searchcloudcomputing/tip/5-cloud-design-patterns-to-create-resilient-applications


https://learn.microsoft.com/en-us/azure/cloud-adoption-framework/antipatterns/anti
patterns-to-avoid

https://www.doit.com/cloud-landing-zone-anti-patterns-to-avoid/

https://learn.microsoft.com/en-us/azure/cloud-adoption-framework/antipatterns/antipatterns-to-avoid
https://learn.microsoft.com/en-us/azure/cloud-adoption-framework/antipatterns/antipatterns-to-avoid
https://www.doit.com/cloud-landing-zone-anti-patterns-to-avoid/


What is a design pattern?

Next, some 350 slides to remind us what it is

First off…



What is a design pattern?

A design pattern “…names, abstracts, and identifies the 
key aspects of a common design structural that make it 
useful for creating a reusable object-oriented design.”*

A design pattern is a proven solution to a recurrent 
problem in a context.

An effective, reusable, proven structure/communication 
solution for a given object-oriented design problem.

What do we mean by proven?
How does communication fit in?

*From the book pictured



Why study them (the design patterns)

Reuse existing, high-quality solutions to commonly recurring problems

Establish common terminology to improve communications within teams
● Shifts the level of thinking to a higher perspective.

Improve team communication and individual learning

Improve modifiability and maintainability of code
● Design patterns are time-tested solutions (i.e., “proven”)



Why study them (the design patterns)

Adoption of improved object-oriented design strategies
● Encapsulation and information hiding
● Design to interfaces
● Favor composition over inheritance





Facade pattern

Pattern Category: Structural

Intent:
● Provide a unified interface to a set of interfaces in a subsystem.
● Facade defines a unified higher-level interface that makes the subsystems easier to use.

Problem addressed: 
● Using design patterns often leads to a complex system of many small components which 

may be daunting for the casual user. It would be nice if there were a way to provide a 
simple interface for the basic functionality that is needed most often.

Solution: 
● Create a Facade class that encapsulates the basic functionality of the system by 

bundling together common operations

When else would a Facade class be useful?



Cloud design patterns

Same as normal design patterns, but specific to cloud applications

- i.e., proven solutions to common problems

What are our concerns again?
- Normal application with:

- Globally distributed userbase
- Load spikes
- … etc.



Now…

There are a lot of design patterns out there
- And there are ever-growing lists for the cloud

- https://github.com/mehdihadeli/awesome-software-architecture/blob/main/docs/cloud-design-p
atterns/cloud-design-patterns.md 

We're going to walk through a few of them
- Keep learning though!
- A good portion of them can be useful for your future career

https://github.com/mehdihadeli/awesome-software-architecture/blob/main/docs/cloud-design-patterns/cloud-design-patterns.md
https://github.com/mehdihadeli/awesome-software-architecture/blob/main/docs/cloud-design-patterns/cloud-design-patterns.md


Cloud fallacies (similar to distributed computing 
fallacies) 

- The network is reliable
- Latency is zero
- Bandwidth is infinite
- The network is secure
- Topology doesn't change
- There is one administrator
- Component versioning is simple
- Observability implementation can be delayed

- i.e., monitoring and understanding what went wrong

https://en.wikipedia.org/wiki/Fallacies_of_distributed_computing 
https://learn.microsoft.com/en-us/azure/architecture/patterns/ 

https://en.wikipedia.org/wiki/Fallacies_of_distributed_computing
https://learn.microsoft.com/en-us/azure/architecture/patterns/


Publish/Subscribe
Asynchronous communication (decoupling transmission of data)

Publisher - sends out data on topics
Subscriber - receives data for topics they've subscribed to
(Broker) - middleman to disseminate traffic / store who gets what

Multiple choices of quality of service
- i.e., do we care if the data is received or non-corrupted?

- Why?
-

Common in IoT applications!

https://docs.aws.amazon.com/prescriptive-guidance/latest/cloud-design-patterns/p
ublish-subscribe.html
https://learn.microsoft.com/en-us/azure/architecture/patterns/publisher-subscriber

https://docs.aws.amazon.com/prescriptive-guidance/latest/cloud-design-patterns/publish-subscribe.html
https://docs.aws.amazon.com/prescriptive-guidance/latest/cloud-design-patterns/publish-subscribe.html
https://learn.microsoft.com/en-us/azure/architecture/patterns/publisher-subscriber


Pub/sub



Clients and brokers

Client:
● Publisher or subscriber that connects to a broker
● Persistent (maintains connection) or transient (not tracked)

Broker (central hub):
● Receiving and filtering messages
● Understanding which clients are 'interested' in data
● Sending messages to subscribed clients
● Authenticating/authorizing clients





Topics
Hierarchical string that filters messages for clients



https://www.youtube.com/watch?v=f5o4tIz2Zzc

https://www.youtube.com/watch?v=f5o4tIz2Zzc


Geode



Geode

Why?
- Availability required worldwide (or, at least in multiple geographic regions)
- Scale required!

Concerns:
- Network latency + traffic management 
- Worldwide deployment
- Data geo-distributed



Geode

How can we solve here?



Geode

How can we solve here?
- Create a bunch of geographic nodes (geodes…)
- "Satellite" deployments

Essentially, have a good devops approach (CI/CD)
- Deploy your app (ideally, templated)
- Reflect it to multiple regions automatically (via CI/CD)
- Load balance to direct traffic

Should never be used by itself (> 1 geode required for the pattern)

Updates to app reflect automatically to all geodes!



Geode

https://learn.microsoft.com/en-us/azure/architecture/patterns/geodes 

https://learn.microsoft.com/en-us/azure/architecture/patterns/geodes


API Gateway

Target application:

- Collection of 
microservices

- Multiple client frontends

Similar to facade pattern!

https://medium.com/design-microservices-architecture-with-patterns/api-gateway-pattern-8ed0ddfce9df

https://medium.com/design-microservices-architecture-with-patterns/api-gateway-pattern-8ed0ddfce9df


API Gateway

Single point-of-entry from clients to 
backend

- Complexity behind the scenes 
hidden/abstracted

Difference to facade?
- Uses reverse proxy / gateway 

routing for communication
- i.e., requests from client are routed 

appropriately to microservice 
needed



How could we implement this?



How could we implement this?

Microservices with databases
- Naturally

Some form of routing application
- Combination of serverless 

functions that know where the 
microservices are?

- VM that handles reverse proxy (or 
a reverse proxy server itself)



API Gateway

Advantages?

Disadvantages?



API Gateway

Advantages?
- Can aggregate client requests into single response

- i.e., Multiple microservices queried and lumped together
- Load balancing possible
- Authorization/Authentication handled by networking layer

Disadvantages?
- Single(-ish) point of failure
- Extra complexity
- Possible anti-pattern

- Bad design!
- Could be giving the gateway "too much to do"



Circuit breaker

Prevents caller service from retrying after multiple timeouts/failures
- Detects when callee is available again

Possible causes:
- Network disruption
- Callee overloaded
- etc.

Issue avoiding?
- Consuming resources from numerous retried calls

- Could impact cost and/or performance!

https://docs.aws.amazon.com/prescriptive-guidance/latest/cloud-design-patterns/circuit-breaker.html



Circuit breaker



Circuit breaker



AWS Implementation



And?

Advantages?

Disadvantages?



And?

Advantages?
- Reduction in unnecessary retry calls
- Possible reduction in 'stale' or duplicate calls

- Perhaps a credit card auth. got stuck in the system?

Disadvantages?
- Complexity!

- Requires multiple services (database, serverless, state machine, etc.)
- Extra $$ for extra services!

- Multiple points of failure
- What if you have an issue with your database now?  Or one of your lambdas?



In-class work!
Break up into teams of 2 or 3
What kind of design pattern would you apply to the following situations?  Why?

1) A system deployed to a factory comprising hundreds of sensor nodes 
reporting on environment readings, conveyor belt status, etc., that transmits 
the data to a central application for analysis

2) A global company using an ERP system (enterprise resource planning, used 
from managing HR topics to project status/tasks) across its offices worldwide 
(think: lots of data to deal with, reports to generate, backups to make)

3) An application deployed to POS (point of sale) systems (think - cash registers) 
that communicate with a company's backend servers to update products in/out 
and cash in/out


