7,

GRANDVALLEY
STATE UNIVERSITY,

www.gvsu.edu

Cloud Computing
Microservices

CIS437
Erik Fredericks // frederer@gvsu.edu

Adapted from Google Cloud Computing Foundations, Overview of Cloud
Computing (Wufka & Canonico)

https://www.openlegacy.com/blog/monolithic-application
https://cloud.google.com/architecture/microservices-architecture-refactoring-monoliths

MONOLITHIC MICROSERVICE
ARCHITECTURE ARCHITECTURE

~ User Micro- Micro-
interface service service
Business Data
Logic Access
Layer
Micro- Micro- Micro- Micro-
service service service service
@ o) @ O
L] ® & D L]
@ @ @ 18] @

Data Base Data Base Data Base Data Base Data Base

https://www.openlegacy.com/blog/monolithic-application
https://cloud.google.com/architecture/microservices-architecture-refactoring-monoliths

Exam

Sellers

S

pnle: a monolith design

Users

S/

Web, mobile, or REST interf+u: l

Order management

Delivery Notifications Inventory
Payment Product catalog Ads

Web Ul or mobile app

3rd parties

S

Database

https://aws.amazon.com/microservices/

1. MONOLITH

— - -

—-— - -

—-— - -

node.js APl Service

2. MICROSERVICES

8-

Users Service

D> = Threads

)
Threads Service

]
Xl Posts J

Posts Service

https://aws.amazon.com/microservices/

What is a monolithic application?

Typically a single entity that controls everything
- "one big app"

single codebase, single program, etc.

Obviously could mean many different things - in the cloud space we see it as a
networked application with all moving parts in one project

- Front end (user interface)

- Back end (server)

- Database (...database)

Problems with this? ?f.j(’ @9
Quite nice to have everything in one place, but: J L

- Updates become problematic
- Everything needs to be re-validated/checked
- Apps tend to grow over time

- Scalability is a problem
- How do we offload a single app to another server easily?

- Doesn't easily port to the cloud!
- Lots of updates necessary to get it up and working with cloud services

Enter microservices

Single app from multiple smaller apps
- Typically connected via networks

Loosely coupled
- (Not a lot of overlap)

Independently deployable // good for
a CIl/CD pipeline

In theory, a good way to build a
scalable architecture

Monolithic
Architecture

i
"
—

Bare Metal

Microservices Architecture

n

.¢¢ oo

=

Bare Metal

=
EEE- (@2 - @B

Virtualized Containers

Public Cloud

Applications

Monolith to microservices

Email Ad Load
service service Internet generator

HTTP HTTP
T
B v l \4
Payment Checkout Efotiténd N Cart
service service service
\ \,, Cache
Shipping Currency Product catalog | Recommendation (Redis)

service service service h service

An example!

Start with a large legacy monolithic
application
- For example, an online store

Everything is one big happy React app

How do we go about turning it into a
collection of microservices?

GVSU Store

Arguments for microservices

Separation of concerns within a large application

Allows for independent teams to work simultaneously
- CI/CD pipelines can be a real help here!

Scaling happens much easier here

- Each microservice can deploy with any number of instances necessary
And can scale up further as well!

- Constraints are limited to the microservice itself, not the app as a whole

Updates are partitioned to their own microservices
- Don't necessarily impact application as a whole

Arguments against microservices

Each service must be well-defined
- APlIs, network calls, etc.
- What happens if its IP address changes?

Security a concern
- Instead of 1 attack vector, now there are n attack vectors

$$%
- Each microservice induces a charge
- What happens if one gets called way more than it should be?
- Or, stores too much data?

Regardless...

Decoupling services can be a good idea

- Pretty commonplace suggestion in software engineering
- Why not in cloud?

light coupling: Loose caupling:
1. More Interdependency 1. Less interdependency
2. More coordination 2. Less coordination

3, More Infarmation flow 3. Lass infarmation tlow

Decoupling

How can we decouple
programs (in general)?

- Single-purpose
classes (laser
focused)

- Reduce
interdependencies

- Reduce redundancies
- Why?

<<interface>> Movable

+moveUp() :void

+moveDown () :void
+movelLeft():void
+moveRight():void

MovablePoint MovableCircle
~x:int 4 -radius:int
~y:int ———< -center:MovablePoint

~xSpeed:int
~ySpeed:int

+MovablePoint(x:int,y:int,
xSpeed :int,ySpeed: int)

+toString():String

+moveUp() :void

+moveDown () :void

+movelLeft ():void

+moveRight():void

+MovableCircle(x:int,y:int
xSpeed :int,ySpeed: int,
radius:int)
+toString():String
+moveUp() :void
+moveDown () :void
+movelLeft():void
+moveRight():void

Decoupling (- version)

Review existing documentation

Determine what can be broken apart
- Then determine how it can be stitched back together

Create well-defined specifications
- i.e., your API
- How does data flow from app to app?
- How can things be compartmentalized

- What are the implications of doing this as well?
Money a concern here?

Domain-driven design (DDD)

https://learn.microsoft.com/en-us/archive/msdn-magazine/2009/february/best-pract
ice-an-introduction-to-domain-driven-design

https://www.geeksforgeeks.org/domain-driven-design-ddd/

"understanding and modeling the problem domain within which a software system
operates"
- (geeksforgeeks link)

https://learn.microsoft.com/en-us/archive/msdn-magazine/2009/february/best-practice-an-introduction-to-domain-driven-design
https://learn.microsoft.com/en-us/archive/msdn-magazine/2009/february/best-practice-an-introduction-to-domain-driven-design
https://www.geeksforgeeks.org/domain-driven-design-ddd/

DDD

What is important to the domain? » objects/entities

|dentify the objects for the domain
- and their relationships
- and their boundaries

Account Management Context

Account
Creation

Account

Balance

Account
Modification

Account
Deletion

Context Mapping of Online Banking System

Transaction Management Context

Transactions

Withdrawls

Transfers

Account
Creation
Account
Balance
Account
Modification
Account
Deletion

Account Management Context

Shared Kernel of Online Banking System

Customer

Customer Context

Transaction
Management Context

=1

Is there a good middle ground?

Oops...was it all a fad?

https://devops.com/microservices-amazon-monolithic-richixbw/

Best of 2023: Microservices Sucks — Amazon Goes Back to Basics

Best of 2023: Microservices Sucks — Amazon Goes Back
to Basics

BY: RICHI JENNINGS ON DECEMBER 28, 2023 — 3 COMMENTS

As we close out 2023, we at DevOps.com wanted to highlight the most popular articles of the year. Following is the latest in
our series of the Best of 2023.

Welcome to The Long View—where we peruse the news of the week and strip it to the essentials. Let's work out what
really matters.

This week: Amazon Prime Video has ditched its use of microservices-cum-serverless, reverting to a traditional,
monolithic architecture. It vastly improved the workload’s cost and scalability.

I'm Shocked. Shocked.
Analysis: But it depends what you mean by “monolithic”
D

https://devops.com/microservices-amazon-monolithic-richixbw/

Not just a scaling advantage? Rafal Gancarz also notes huge cost savings—"Prime Video Switched from Serverless

to EC2 and ECS™:

“Single application process”

Prime Video, Amazon'’s video streaming service ..Jachieved a 90% reduction in operational costs as a result.}|..

The initial architecture of the solution was based on microservices...implemented on top of the serverless

infrastructure stack. The microservices included splitting audio/video streams into video frames or decrypted

audio buffers as well as detecting various stream defects ... using machine-learning algorithms.

The problem of high operational cost was caused by a

high volume of read/writes to the S3 bucket storing|

intermediate work items...and a large number of step function state transitions. ... In the end, the team decided

to consolidate all of the business logic in a single application process. ... The resulting architecture had the
entire ... process running [as] instances distributed across different ECS tasks to avoid hitting vertical scaling

limits.

Read the articles - they're fascinating

However, does this mean that microservices are inherently bad?

No panacea architecture

Same story, different domain
- Don't over-architect your solution

- Analyze your needs rather than start with pre-conceived notions
"We need to use serverless"

- Monoliths have their advantages!
The result seems to be a mishmash of monolith with scalable services...

Is there a good middle ground?

Some combination of microservices swarming around a monolith is probably a
decent solution

- Break off the pieces that require frequent updates
- Low-impact to your bill

i.e., design your app for what makes sense for your organization (or your project)
- Don't build to a buzzword!

Lab time!

Let's go from monolith to microlith (or,
collection of microservices)

CREATE A NEW PROJECT FIRST!

https://codelabs.developers.goodgle.com/
codelabs/cloud-monolith-to-microservice

s-gke/#0

Migrating a Monolithic Website to Microservices
on Google Kubernetes Engine

About this codelab
= Lastupdated Oct 7, 2020

@ Written by Mike Verbanic

1. Introduction

Ire? king down an into

Why migrate from a monolithic application to a microservices
; most of these stem from the fact that microservices are loosely coupled.

vices has the following
« The microservices can be independently tested and deployed. The smaller the unit of deployment, the easier the
deployment.
« They can be implemented in different languages and frameworks. For each microservice, you're free to choose the
best technology for its particular use case.
« They can be managed by different teams. The boundary between microservices makes it easier to dedicate a team

to one or several microservices.

« By moving to microservices, you loosen the dependencies between the teams. Each team has to care only about
the APIs of the microservices they are dependent on. The team doesn't need to think about how those
microservices are implemented, about their release cycles, and so on.

« You can more easily design for failure. By having clear boundaries between services, it's easier to determine what

to do if a service is down. m

Some of the disad ges when pared to are:

https://codelabs.developers.google.com/codelabs/cloud-monolith-to-microservices-gke/#0
https://codelabs.developers.google.com/codelabs/cloud-monolith-to-microservices-gke/#0
https://codelabs.developers.google.com/codelabs/cloud-monolith-to-microservices-gke/#0

What is the goal?

Take an existing monolithic application (defined within Kubernetes) and break it
apart into a collection of services

Things to consider:
- There are going to be a lot of commands specific to Kubernetes/Cloud Build
here that you don't necessarily need to remember
- Essentially we're going to be:

1) Building and deploying a monolith and checking that it works

2) Taking out part of the monolith and replacing it with another service
a) And reconfiguring the monolith to point to that service
b) Building and redeploying and checking that it works
c) Andsoon

If you made a mistake and things are broken

Choices are to:
1) Get frustrated
2) Take a breath
3) See if you made a typo and re-deploy
4) Get frustrated and start over

If you get npm - command not found:

curl -sL https://deb.nodesource.com/setup 20.x | sudo -E bash -

sudo apt install -y nodejs

sudo apt install -y build-essential

curl -o- https://raw.githubusercontent.com/nvm-sh/nvm/v0.40.1/install.sh | bash

If you get an error deploying the monolith early on- try deleting and running the
deploy command again

delete: kubectl delete service monolith
D

But instead....

Qwiklabs made a variant: Migrating a Monolithic Website to Microservices on
Google Kubernetes Engine

https://www.cloudskillsboost.qoogle/focuses/11953?catalog rank=%7B%22rank%22%3A3%2C%22num_filters%22%3A0%2C%22has
search%22%3Atrue%7D&parent=catalog&search id=38267408

Updating a deployment (assuming you made frontend:2.0.0):

kubectl set image deployment/frontend
frontend=gcr.io/${GOOGLE_CLOUD PROJECT}/frontend:2.0.0

https://www.cloudskillsboost.google/focuses/11953?catalog_rank=%7B%22rank%22%3A3%2C%22num_filters%22%3A0%2C%22has_search%22%3Atrue%7D&parent=catalog&search_id=38267408
https://www.cloudskillsboost.google/focuses/11953?catalog_rank=%7B%22rank%22%3A3%2C%22num_filters%22%3A0%2C%22has_search%22%3Atrue%7D&parent=catalog&search_id=38267408

