
Cloud Computing
Microservices

CIS437
Erik Fredericks // frederer@gvsu.edu

Adapted from Google Cloud Computing Foundations, Overview of Cloud
Computing (Wufka & Canonico)

https://www.openlegacy.com/blog/monolithic-application
https://cloud.google.com/architecture/microservices-architecture-refactoring-monoliths

https://www.openlegacy.com/blog/monolithic-application
https://cloud.google.com/architecture/microservices-architecture-refactoring-monoliths

Example: a monolith design

https://aws.amazon.com/microservices/

https://aws.amazon.com/microservices/

What is a monolithic application?

Typically a single entity that controls everything
- "one big app"

- single codebase, single program, etc.

Obviously could mean many different things - in the cloud space we see it as a
networked application with all moving parts in one project

- Front end (user interface)
- Back end (server)
- Database (...database)

Problems with this?

Quite nice to have everything in one place, but:

- Updates become problematic
- Everything needs to be re-validated/checked
- Apps tend to grow over time

- Scalability is a problem
- How do we offload a single app to another server easily?

- Doesn't easily port to the cloud!
- Lots of updates necessary to get it up and working with cloud services

Enter microservices

Single app from multiple smaller apps
- Typically connected via networks

Loosely coupled
- (Not a lot of overlap)

Independently deployable // good for
a CI/CD pipeline

In theory, a good way to build a
scalable architecture

Monolith to microservices

An example!

Start with a large legacy monolithic
application

- For example, an online store

Everything is one big happy React app

How do we go about turning it into a
collection of microservices?

GVSU Store

Front end (login, product listings, profile, …)

Back end (processing, lookups, ERP, inventory, …)

Database (CRUD ops, analytics, …)

Arguments for microservices

Separation of concerns within a large application

Allows for independent teams to work simultaneously
- CI/CD pipelines can be a real help here!

Scaling happens much easier here
- Each microservice can deploy with any number of instances necessary

- And can scale up further as well!
- Constraints are limited to the microservice itself, not the app as a whole

Updates are partitioned to their own microservices
- Don't necessarily impact application as a whole

Arguments against microservices

Each service must be well-defined
- APIs, network calls, etc.
- What happens if its IP address changes?

Security a concern
- Instead of 1 attack vector, now there are n attack vectors

$$$
- Each microservice induces a charge
- What happens if one gets called way more than it should be?
- Or, stores too much data?

Regardless…

Decoupling services can be a good idea
- Pretty commonplace suggestion in software engineering

- Why not in cloud?

Decoupling

How can we decouple
programs (in general)?

- Single-purpose
classes (laser
focused)

- Reduce
interdependencies

- Reduce redundancies
- Why?

Decoupling (☁ version)

Review existing documentation

Determine what can be broken apart
- Then determine how it can be stitched back together

Create well-defined specifications
- i.e., your API
- How does data flow from app to app?
- How can things be compartmentalized
- What are the implications of doing this as well?

- Money a concern here?

Domain-driven design (DDD)

https://learn.microsoft.com/en-us/archive/msdn-magazine/2009/february/best-pract
ice-an-introduction-to-domain-driven-design

https://www.geeksforgeeks.org/domain-driven-design-ddd/

"understanding and modeling the problem domain within which a software system
operates"

- (geeksforgeeks link)

https://learn.microsoft.com/en-us/archive/msdn-magazine/2009/february/best-practice-an-introduction-to-domain-driven-design
https://learn.microsoft.com/en-us/archive/msdn-magazine/2009/february/best-practice-an-introduction-to-domain-driven-design
https://www.geeksforgeeks.org/domain-driven-design-ddd/

DDD

What is important to the domain? → objects/entities

Identify the objects for the domain
- and their relationships
- and their boundaries

Is there a good middle ground?

Oops…was it all a fad?

https://devops.com/microservices-amazon-monolithic-richixbw/

https://devops.com/microservices-amazon-monolithic-richixbw/

Read the articles - they're fascinating

However, does this mean that microservices are inherently bad?

No panacea architecture

Same story, different domain

- Don't over-architect your solution

- Analyze your needs rather than start with pre-conceived notions
- "We need to use serverless"

- Monoliths have their advantages!
- The result seems to be a mishmash of monolith with scalable services…

Is there a good middle ground?

Some combination of microservices swarming around a monolith is probably a
decent solution

- Break off the pieces that require frequent updates
- Low-impact to your bill

i.e., design your app for what makes sense for your organization (or your project)
- Don't build to a buzzword!

Lab time!

Let's go from monolith to microlith (or,
collection of microservices)

CREATE A NEW PROJECT FIRST!

https://codelabs.developers.google.com/
codelabs/cloud-monolith-to-microservice
s-gke/#0

https://codelabs.developers.google.com/codelabs/cloud-monolith-to-microservices-gke/#0
https://codelabs.developers.google.com/codelabs/cloud-monolith-to-microservices-gke/#0
https://codelabs.developers.google.com/codelabs/cloud-monolith-to-microservices-gke/#0

What is the goal?

Take an existing monolithic application (defined within Kubernetes) and break it
apart into a collection of services

Things to consider:
- There are going to be a lot of commands specific to Kubernetes/Cloud Build

here that you don't necessarily need to remember
- Essentially we're going to be:

1) Building and deploying a monolith and checking that it works
2) Taking out part of the monolith and replacing it with another service

a) And reconfiguring the monolith to point to that service
b) Building and redeploying and checking that it works
c) And so on

If you made a mistake and things are broken
Choices are to:
1) Get frustrated
2) Take a breath
3) See if you made a typo and re-deploy
4) Get frustrated and start over

If you get npm - command not found:
curl -sL https://deb.nodesource.com/setup_20.x | sudo -E bash -
sudo apt install -y nodejs
sudo apt install -y build-essential
curl -o- https://raw.githubusercontent.com/nvm-sh/nvm/v0.40.1/install.sh | bash

If you get an error deploying the monolith early on- try deleting and running the
deploy command again
delete: kubectl delete service monolith

But instead….

Qwiklabs made a variant: Migrating a Monolithic Website to Microservices on
Google Kubernetes Engine

https://www.cloudskillsboost.google/focuses/11953?catalog_rank=%7B%22rank%22%3A3%2C%22num_filters%22%3A0%2C%22has
_search%22%3Atrue%7D&parent=catalog&search_id=38267408

Updating a deployment (assuming you made frontend:2.0.0):

kubectl set image deployment/frontend
frontend=gcr.io/${GOOGLE_CLOUD_PROJECT}/frontend:2.0.0

https://www.cloudskillsboost.google/focuses/11953?catalog_rank=%7B%22rank%22%3A3%2C%22num_filters%22%3A0%2C%22has_search%22%3Atrue%7D&parent=catalog&search_id=38267408
https://www.cloudskillsboost.google/focuses/11953?catalog_rank=%7B%22rank%22%3A3%2C%22num_filters%22%3A0%2C%22has_search%22%3Atrue%7D&parent=catalog&search_id=38267408

