
Cloud Computing
Serverless Functions

CIS437
Erik Fredericks // frederer@gvsu.edu

Adapted from Google Cloud Computing Foundations, Overview of Cloud
Computing (Wufka & Canonico)

Overview

Last time we made microservices

What was that again?

Last time we made microservices

Now let's make them even tinier!

Serverless functions!

- Google Cloud Functions
- AWS Lambda Functions
- Microsoft Azure Functions

(i.e., probably my favorite cloud service to play with)

Question

Can a microservice be a serverless function?

Where Cloud Functions fits within Google Cloud

IaaS

Virtual machines with
industry-leading
price/performance

Hybrid

Cluster manager and
orchestration engine built
on Google’s container
experience

PaaS Serverless logic

A flexible, zero ops
platform for building
highly available apps

A lightweight fully
managed serverless
execution environment for
building and connecting
cloud services

Compute Engine Google
Kubernetes EngineApp Engine Cloud Functions

Copyright Google LLC. For educational purposes in accordance with the terms of use set forth on the program Website.

https://sites.google.com/google.com/gcp-teachingresources/privacy-and-terms

Connect and extend
cloud services

Events and triggers Serverless

The components that make Cloud Functions work

Copyright Google LLC. For educational purposes in accordance with the terms of use set forth on the program Website.

https://sites.google.com/google.com/gcp-teachingresources/privacy-and-terms

Cloud services Other APIsCloud Functions

Responds to events

Emit events

Writes back

Invokes other
services

How Cloud Functions works

Copyright Google LLC. For educational purposes in accordance with the terms of use set forth on the program Website.

https://sites.google.com/google.com/gcp-teachingresources/privacy-and-terms

(I was also going to include some AWS slides but)

The concepts are near-identical

¯_(ツ)_/¯

And so…

What are some applications you could use serverless
functions with?

Before we dive in, considerations!

Again, with FaaS:

- No server, so no configuration
- No OS, so no setup

- Only a function, dependencies, and triggers

Practical considerations

Serverless functions typically have:

1) Limited execution time
2) Maximum amount of memory usage
3) Cost per invocation
4) Who is running the function?

Much like everything we've seen, these values can and will change over time
- SO IT IS UP TO YOU THE CLOUD ADMIN TO KEEP AN EYE ON THINGS

Examples!

https://firebase.google.com/docs/functions/use-cases

https://firebase.google.com/docs/functions/use-cases

Let's create one and really step through it

This is literally, going to be the most important serverless function you ever create

Shall we start with the demonstration in the terminal?

We are going to use a publicly-available API to retrieve some mission-critical data

In the terminal (assuming you have curl installed)

$ curl -H "Accept: application/json" https://icanhazdadjoke.com/

The Cloud Function

You'll notice that you have access to a lot of different languages + versions

I'm going to use Python 3.12 - you can use whatever you want
- We're going to need to replicate the curl command, however, so you'll need

to figure that out for your particular language

First…

Unauthenticated → ANYBODY ON THE INTERNET
CAN ACCESS IT!

- Pros/Cons?

Require authentication → ONLY THOSE WITH
ACCESS CAN … ACCESS IT

- Pros/Cons?

jokes.py

We'll need the requests library

In requirements.txt, tell the CF that we need a particular version

requests==2.32.3

jokes.py

And update the default code:

import functions_framework
import requests

@functions_framework.http
def hello_http(request):
 url = "https://icanhazdadjoke.com"
 headers = {'Accept':'application/json'}
 r = requests.get(url, headers=headers)
 return r.json()

ALWAYS USE THIS TO
CHECK FOR
ERRORS!!!

And then…

Let's make it purty

What's wrong?
- Just returning the entire JSON object

So…

joke = r.json()['joke']
return f"<h1>{joke}</h1>"

https://cloud.google.com/functions/
pricing

https://cloud.google.com/functions/pricing
https://cloud.google.com/functions/pricing

FOR BALANCE

https://aws.amazon.com/lambda/pricing/

https://aws.amazon.com/lambda/pricing/

Interestingly, you can build them locally as well

functions_framework:
https://cloud.google.com/functions/docs/functions-framework

→ https://github.com/GoogleCloudPlatform/functions-framework-python

Build your cloud functions locally, test them, and then deploy them when you're
ready

…why do this?

https://cloud.google.com/functions/docs/functions-framework
https://github.com/GoogleCloudPlatform/functions-framework-python

Local functions_framework

(Note: AWS Lambdas have a similar framework you can install)
(https://docs.aws.amazon.com/serverless-application-model/latest/developerguide/
serverless-sam-cli-using-debugging.html)

https://docs.aws.amazon.com/serverless-application-model/latest/developerguide/serverless-sam-cli-using-debugging.html
https://docs.aws.amazon.com/serverless-application-model/latest/developerguide/serverless-sam-cli-using-debugging.html

Considerations!

Cold start vs. warm start
- Serverless functions still

need something to run
on, right?

- They essentially run on
VMs that aren't
necessarily always on

Tips

https://cloud.google.com/functions/docs/bestpractices/tips

(Note - out of all the things that are in flux with cloud apps, this might be the "most"
in flux given that it depends on things behind the scenes that are not
well-publicized)

(Almost like guessing how the YouTube algorithm works)

https://cloud.google.com/functions/docs/bestpractices/tips

(Important) Tips

Idempotent functions
- Functions should always return the same output given the same input

- Even if they use random…

HTTP functions must send HTTP response
- If no HTTP response, then a timeout can happen
- Leaving you … waiting forever (and getting into retry loops)

Dependencies
- Minimize them if possible!
- They need to be installed/loaded each time the function cold-starts

More suggestions

Set a minimum number of instances
- How many must be "on call" to handle request
- Minimize cold start!

Ignoring the global variable suggestions as those seem - anti-patternish
- E.g., depending on globals to be remembered

Triggers

Different triggers other than HTTPS!
- Pub/Sub, some event
- Here, change in a cloud storage bucket

- Note: must be in same region as bucket

What could we do with this?

Step 1) File uploaded to Cloud Storage

…?

Triggered!

https://cloud.google.com/functions/docs/tutorials/imagemagick

An offensive image is included above - forewarning it is a zombie scene

Notes:
1) The create bucket code in the documentation is slightly out of date - creating

by hand in the Console is less error-prone
2) Use python310 for the runtime (I was getting odd syntax errors with 3.12)..b
3) Enable Cloud Vision API

https://cloud.google.com/functions/docs/tutorials/imagemagick

Lambdas

In CIS437 - F24:
- Activity - AWS Lambda

In-Class Work

Create a serverless function!

It should:

1) Use your favorite language
2) Have it be HTTP-triggered, unauthenticated, and return HTML
3) When triggered, it must randomly return either a:

a) Meme picture (make it spooky)
b) Emoji
c) ASCII emoji from textfac.es

(i.e., return random(["meme", "emoji", "ascii-emoji"]))

