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Abstract. A self-adaptive system (SAS) can reconfigure at run time in
response to adverse combinations of system and environmental condi-
tions in order to continuously satisfy its requirements. Moreover, SASs
are subject to cross-cutting non-functional requirements (NFRs), such
as performance, security, and usability, that collectively characterize how
functional requirements (FRs) are to be satisfied. In many cases, the trig-
ger for adapting an SAS may be due to a violation of one or more NFRs.
For a given NFR, different combinations of hierarchically-organized FRs
may yield varying degrees of satisfaction (i.e., satisficement). This pa-
per presents Providentia, a search-based technique to optimize NFR
satisficement when subjected to various sources of uncertainty (e.g., en-
vironment, interactions between system elements, etc.). Providentia

searches for optimal combinations of FRs that, when considered with
different subgoal decompositions and/or differential weights, provide op-
timal satisficement of NFR objectives. Experimental results suggest that
using an SAS goal model enhanced with search-based optimization sig-
nificantly improves system performance when compared with manually-
and randomly-generated weights and subgoals.

Keywords: search-based software engineering, non-functional requirements, self-
adaptive systems, evolutionary computation

1 Introduction

A self-adaptive system (SAS) provides adaptation strategies for reconfiguration
at run time to mitigate unexpected issues that arise as a result of uncertainty
(e.g., adverse environmental conditions or unexpected issues in the system it-
self) [15, 19]. The SAS generally will use these adaptation strategies to select an
optimal configuration that enables continuous requirements satisficement (i.e.,
degree of satisfaction) [5]. An SAS is governed by functional requirements (FRs)
that can be mathematically quantified to monitor satisficement, as well as by
non-functional requirements (NFRs) that tend to be qualitative and may not be



easily mathematically quantifiable (e.g., resiliency and efficiency) [17, 34]. How-
ever, this process relies on domain knowledge and may be sub-optimal given
changing environmental conditions. This paper presents Providentia, a search-
based technique to be used at design time to automatically determine an optimal
set of FRs, including the level of impact of each, to support each NFR in an SAS.

NFRs can be modeled as behavioral goals (e.g., KAOS [17]) or soft goals (i.e.,
NFR framework [34] and iStar modeling language [36]). Soft goals describe pref-
erences of system behaviors that tend to be qualitative in nature [23], thereby
making the determination of an optimal reconfiguration strategy more challeng-
ing for SASs. Similar to Providentia, the Analytic Hierarchy Process (AHP)
decomposes NFRs into one or more weighted FRs using an automated weighting
scheme to prioritize FRs [27]. However, prioritizations in an SAS determined at
design time may change drastically as the system experiences various forms of
uncertainty due to changing environmental conditions and unexpected system
changes, such as unwanted feature interactions.

We introduce Providentia to address the challenges with quantifying and
analyzing NFRs at run time via a design-time technique that takes into account
environmental and system uncertainty. Providentia uses a utility function that
specifies a mathematical expression of goal satisficement for each FR. Each NFR
has a linear-weighted expression that specifies the impact that a given FR has
in satisficing the NFR objective [27]. For a given set of SAS FRs with corre-
sponding metrics to assess their satisficement, Providentia explores different
combinations of weights for a linear-weighted expression of FRs that contribute
to the satisficement of their respective NFRs.

To make the overall system robust to adverse conditions, an evolutionary-
based search process assesses the system’s run-time behavior using an executable
specification of the system that is subjected to randomly-generated sources of
uncertainty in order to identify optimal goal model configurations for maximizing
FR/NFR satisficement. Providentia optimizes the FR selection process using
a genetic algorithm as a search heuristic, where the search space is the different
goal model configurations that capture varying combinations of FRs. The genetic
algorithm determines optimal weight assignments that result in the highest sat-
isficement of the NFR when faced with uncertainty. The Providentia-optimized
goal model is then applied to the SAS at run time. The correlated evaluation
of NFR and FR satisficement enables traditionally soft goals to be evaluated
with FR metrics during execution, thereby enabling online SAS reconfiguration
in response to high-level non-functional and functional objectives. Furthermore,
optimizing the weighted contributions of FRs to each NFR according to esti-
mated sources of uncertainty enables the system to perform better at run time
under actual sources of uncertainty, as a requirements engineer may not be able
to foresee the diverse range and scope of cases when deriving their respective
weights.

We illustrate the effectiveness of Providentia with an industry-provided ap-
plication, namely, a remote data mirroring (RDM) network [13, 14]. The RDM
application must replicate and disseminate messages to each RDM within the



network and can experience uncertainty due to dropped or delayed messages,
sensor noise, and unexpected server and network link failures. For run-time
assessment purposes, we use a network simulator that conforms to the speci-
fications provided by our industrial collaborator. Experimental results suggest
that using Providentia to optimize NFRs based on simulated sources of uncer-
tainty significantly improves overall requirement fitness as well as decreases the
number of requirement violations of the RDM application when compared to
NFRs using human-generated identification of contributing FRs, their weights,
as well as those assigned by random search. The remainder of this paper is or-
ganized as follows. Section 2 provides relevant background information on the
RDM application, goal-oriented requirements engineering (GORE), NFRs, and
utility functions for assessing metrics. Section 3 details the implementation of
Providentia for automatically determining FR selection and weight assignment
for NFRs. Section 4 presents our experimental results and Section 5 discusses
related work. Section 6 summarizes our results and overviews future directions.

2 Background

This section provides relevant background information on the RDM application,
GORE, NFRs, and utility functions.

2.1 Remote Data Mirroring

RDM is a data protection technique for ensuring that data loss is minimized and
data availability is maximized in the context of data replicates that are dissemi-
nated to other servers (i.e., data mirrors) in physically remote locations [13, 15].
An RDM network can be modeled as an SAS [26], enabling reconfiguration in
terms of network topology and data propagation parameters to enable contin-
uous requirements satisficement. Uncertainty can impact the RDM in terms of
unexpected dropped or delayed messages, random network link or data mirror
failures, and noise applied to network links and data mirror sensors. These re-
configuration strategies can be fulfilled by downgrading the status of the affected
data mirrors from active (i.e., can send and receive messages) to passive (i.e.,
can only receive messages) or quiescent (i.e., cannot send or receive messages).

2.2 Goal-Oriented Requirements Engineering

GORE is an approach for graphically specifying a system’s key objectives and
constraints using both functional and non-functional goals [8]. A goal is a system
behavior achieved through the cooperation of its agents, where an agent is a
system component that performs actions based on the behavior specified by
goals. A requirement is a goal under the responsibility of a single agent. An
expectation is a requirement whose agent is a part of the environment. Functional
goals specify a service to be provided and non-functional goals impose a quality
constraint on those functional services [17].



GORE enables goal decomposition using a directed acyclic graph, where each
node represents a goal and each edge represents a goal refinement [17]. GORE has
been extended with additional refinement strategies through KAOS [8, 17] and
iStar [35]. KAOS introduces AND- and OR-refinements for additional satisfice-
ment constraints, where an AND-refined goal is satisfied if each sub-goal is also
satisfied and an OR-refined goal is satisfied if at least one sub-goal is satisfied.
KAOS functional goals may be further categorized as invariant or non-invariant,
where invariant goals must always be satisfied and non-invariant goals may be
temporarily unsatisfied due to transient conditions. Invariant goals are denoted
by the keywords “Maintain” or “Avoid” and non-invariant goals are denoted by
the keyword “Achieve.”

Figure 1 presents the KAOS goal model of the RDM application that de-
scribes its hierarchical relationships between goals, requirements/expectations,
and agents.3
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Fig. 1: RDM goal model.

3 This work does not use the KAOS formal refinement infrastructure.



2.3 Non-Functional Requirements

NFRs impose a quality constraint on a system [6]. Such goals are often difficult
to quantify, given their relative subjectivity. Moreover, cross-cutting concerns
may manifest in NFRs, given their broad impacts on the overall system [6].
While rigorous mathematical models have been previously described for calcu-
lating requirements satisfaction [10, 24], such models generally require a detailed
understanding of the real-world environment that is often difficult or impossi-
ble to derive for NFRs. A sample NFR for the RDM application in Figure 1 is
Minimize [Power], where many factors (e.g., Goals (A), (E), (I), (V), and (W))
could contribute to either increasing or decreasing power consumption over time,
as illustrated in Figure 2.
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Fig. 2: NFR7: Minimize[Power].

We use the model in Figure 2 as an illustrative example to demonstrate the
effectiveness of Providentia, where all functional goals represent FRs and non-
functional goals represent NFRs. Note that although Figure 2 is presented in
a separate diagram, for discussion, the NFR is intended to depict an extension
of the input goal model shown in Figure 1, where the NFRs are evaluated in
conjunction with the FRs.

2.4 Utility Functions

A utility function can be used to quantify the degree of satisfaction (i.e., satisfice-
ment) of software requirements at run time in autonomic computing systems [9,
24, 30]. A utility value of 0.0 indicates a violation, 1.0 indicates complete satis-
faction, and any value within range of (0.0, 1.0) indicates a degree of satisfice-
ment for that requirement [5]. For example, Expression 1 shows the utility value
calculation for Goal (V) to Achieve [Num Passive Data Mirrors == 0], as
introduced in Figure 1.

util(goalV ) =


1.0 if Num Passive Data Mirrors == 0

x if 0 < Num Passive Data Mirrors < 20% of total nodes

0.0 if Num Passive Data Mirrors ≥ 20% of total nodes

(1)

Goal (V) can be quantified by monitoring the state of each RDM within the
network. If there are no RDMs in a passive state, then the utility value is 1.0.
Otherwise, the utility value linearly decreases until a threshold (e.g., 20% of the
total number of nodes for this paper) is met and then the utility value equals
0.0, indicating a requirement violation.



3 Approach

This section introduces Providentia, our technique for automatically optimiz-
ing the selection of FRs and their corresponding weights for satisficing NFR
objectives. We first describe the inputs and outputs of Providentia and then
present the approach.

3.1 Providentia: Inputs and Outputs

Providentia requires the following inputs: a goal model representing both FRs
and NFRs of the SAS, a set of utility functions for run-time requirements moni-
toring, a set of applicable FRs for each NFR, and an executable specification or
prototype of the SAS to be used for run-time simulation, including any defined
sources of uncertainty (for this experiment, environmental and system uncer-
tainty are used). The output of Providentia is a goal model with optimized
FR/NFR relationships. Note that the success of Providentia relies on the ac-
curacy of the input data. For example, if the set of applicable FRs for each NFR
is inaccurate or if any sources of uncertainty are omitted, the effectiveness of
the search-based heuristic may not necessarily be optimal. Note that the time
to compute an optimal goal model increases as the size of the input goal model
and requirements data increases.

Goal model. A KAOS goal model is required to specify the FRs and NFRs
of the SAS.

Utility functions. A utility function shall be derived for each FR for run-
time monitoring of SAS requirements [9, 30]. Each utility function comprises
a mathematical function that maps monitoring data to a scalar value within
[0.0, 1.0], demonstrating how well the FR is satisfied at run time.

Applicable set of FRs. A requirements engineer shall provide an initial
set of applicable FRs that can have an impact on an NFR. For example, a
requirements engineer may specify that Goals (A), (E), (I), (V), and (W) most
critically impact the NFR for reducing power consumption, however that list
may be further expanded at design time (e.g., due to uncertainty factors) to
include Goals (B), (K), (M), (O), (P), and (U). Extending the list of possible
FRs for each NFR allows a larger search space for Providentia to find an
optimal solution that a requirements engineer may not be able to foresee.

Executable specification. An executable specification, such as a simula-
tion or prototype, of an SAS must also be provided as input. The specification
applies the FR utility functions to measure how well SAS requirements are being
satisfied at run time. The executable specification also applies different combi-
nations of system and environmental parameters, including possible sources of
uncertainty and their impact on the system (e.g., broken links, failed servers,
etc.), to enable the SAS to experience a wide range of configuration states.

Output. The output of Providentia is (1) the NFR goal model, with (2) a
set of FRs that collectively contribute to the satisficement of each NFR, and (3)
an optimized weight value assigned to each FR. A weight value of 0.0 for an FR
indicates that the FR does not contribute to the satisfaction of the NFR. For



example, for NFR7 (Minimize [Power]), Providentia determined the following
weights to be optimal for each Goal: B: 0.237144, E: 0.241000, K: 0.007185, M:
0.373794, O: 0.049442, U: 0.067218, V:0.024216. Although Goal (A) was included
in the initial set of applicable FRs, its weight value was 0.0 to indicate that Goal
A did not contribute to satisfying the requirements to minimize power.

3.2 Providentia Technique

This section overviews the Providentia technique, comprising a genetic algo-
rithm [12] to search for optimal NFR weighting and requirements combina-
tions. Figure 3 presents a data flow diagram that illustrates the process used
by Providentia. Each step is next presented in detail.
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Fig. 3: Data flow diagram of Providentia technique.

(1) Define Solution Structure. Each candidate solution in Providentia is
encoded in a fixed-length genome as shown in Figure 4, where each gene cor-
responds to a floating-point weight specified for a supporting FR. Each set of
weights that correspond to an NFR (i.e., sub-genome, denoted by bolded line)
must sum to a value of 1.0. The entire genome comprises all sub-genomes that can
be used to define each NFR, e.g., [[weightsnfr1 ],[weightsnfr2 ],...,[weightsnfrn ]].

...NFRnGenome:

NFR7

0.3 0.0 0.1 0.1 0.0 0.0 0.0 0.0 0.3 0.20.3 0.0 0.1 0.1 0.0 0.0 0.0 0.0 0.3 0.2

Goal: A B E I K M O P V WA B E I K M O P V W

Fig. 4: Providentia sample genome.

(2) Configure Search Process. The search process must be configured by
specifying a population size, number of generations, crossover rate, mutation
rate, and selection rate. Based on empirical evidence on convergence rates, this
paper specifies a population size of 20, 50 generations, a crossover rate of 25%,
and a mutation rate of 50%. For selection, we use the tournament selection
approach [12] and set the tournament size to 3. While larger values for population
size and generations were tested (e.g., populations of 25-50 and generations of 50-
100), an optimal convergence was discovered on average at the specified values.



(3) Evaluate NFR Models. The simulation provided as input applies the goal
model to randomized combinations of uncertainty in order to obtain a set of FRs
with weights adjusted to be as robust as possible. To guide the search process,
we maximize average FR/NFR satisficement as shown in Equations 2 – 4 and
minimize the number of SAS adaptations to reduce overall network disruption
as shown in Equation 5. We collect these metrics in a linear weighted sum as
shown in Equation 6. We next describe each equation in turn.

The performance of each NFR as an aggregate utility function is defined as:

utility valuenfrn =

|frsnfrn |∑
i=1

utilityfri ∗ weightfri (2)

where |frsnfrn | refers to the number of supporting FRs for nfrn, utilityfri refers
to the calculated utility value for fri, and weightfri refers to the defined weight
(i.e., relative importance) of fri. Based on Equation 2, each NFR has a utility
function that can be monitored to quantify performance at run time. If NFR7
(Minimize [Power]) becomes violated or satisficed to an unsatisfactory degree,4

then the RDM application will self-reconfigure to perform an appropriate miti-
gation strategy.

The fitness sub-function shown in Equation 3 maximizes FR satisficement
throughout execution, where utility valuefunctional represents the calculated
utility values for FRs and timestepssim represents the number of simulation
timesteps:

FFfr =

∑
utility valuefunctional

|utility valuefunctional| ∗ timestepssim
(3)

The fitness sub-function shown in Equation 4 maximizes NFR satisficement
throughout execution, where utility valuenon−functional references the calcu-
lated utility values from Equation 2:

FFnfr =

∑
utility valuenon−functional

|utilityvaluenon−functional| ∗ timestepssim
(4)

The fitness sub-function shown in Equation 5 minimizes the number of adap-
tations performed by the SAS, where |adaptations| reports the total number of
reconfigurations performed by the SAS, and |faults| reports the total number
of adverse conditions introduced within the simulation.

FFna = 1.0− |adaptations|
|faults|

(5)

We aggregate FFnfr, FFfr, and FFna into a linear weighted sum as shown
in Equation 6:

FF =

{
αnfr ∗ FFnfr + αfr ∗ FFfr + αna ∗ FFna iff invariants true

0.0 otherwise
(6)

where αnfr, αfr, and αna are manually set by a requirements engineer based
on domain knowledge/empirical evidence, reflect the relative importance of each

4 For this paper, we select a threshold of 0.4 to signify requirement non-satisfaction
based on empirical evidence.



sub-FR, and must cumulatively sum to a value of 1.0. While many different ap-
proaches exist for combining fitness sub-functions, we find that a linear-weighted
sum balances competing concerns adequately for this domain.
(4) Select NFR Models. Providentia selects genomes, using tournament
selection, with the highest fitness values calculated from Equation 6 to guide the
search process towards promising areas of the search space. The remainder of
the population is removed from consideration.
(5) Generate NFR Models. Providentia uses two-point crossover and single-
point mutation to generate new solutions. Two-point crossover selects two indices
to be used as crossover points, selects two candidate solutions as parents, and
swaps genes between the crossover points to create two new child solutions.
Single-point mutation randomly selects a single gene for mutation, where the
floating-point weight value can be modified within ±20% of its original value.

Given that each genome comprises sets of weights for each NFR (i.e., sub-
genomes), crossover and mutation are applied to internal sub-genomes. Further-
more, a process of normalization follows creation of child solutions. Specifically,
each value selected to participate in either crossover or mutation is retained, and
the remaining genes for that particular NFR within a sub-genome are normalized
to sum to 1.0. Steps (3) – (5) are applied iteratively (i.e., the genetic algorithm
loop) until the number of generations is reached. Providentia then outputs a
set of optimal weighted FRs for each NFR.

4 Experimental Results

This section describes our experimental setup and presents our experimental
results from applying Providentia to the RDM application.

4.1 Experimental Setup

We modeled the RDM network application as a completely-connected graph,
where each node represents an RDM and each edge represents a network link.
System and environmental parameters were randomized for each trial and based
on an operational model previously presented by Keeton et al. [13, 14]. For each
experimental trial, a given network comprised random number of RDMs (i.e.,
within [15, 30]), a random number of valid messages (i.e., [100, 200]) were inserted
into RDMs throughout the network at random timesteps and were required to be
replicated to all other RDMs. We examined seven NFRs specific to the system.
The simulation was performed over 300 timesteps.

We compared and evaluated different combinations of supporting FR weights
optimized by Providentia. The set of seven NFRs was applied to three types of
treatments: (1) FRs and weights generated by random search [1], (2) manually-
selected FRs and corresponding weights assigned by a requirements engineer,
and (3) Providentia-optimized FRs and weights. We limit our discussion to
NFR4 and NFR7 due to space constraints. The manually selected goals and
weights for NFR4 are Goals A, B, D, G, H with corresponding weights 0.4, 0.2,



0.2, 0.1, 0.1, and for NFR7 manually selected Goals A, E, I, V, W with cor-
responding weights 0.3, 0.1, 0.1, 0.3, 0.2. Using the fitness functions defined in
Equations 3-6, we demonstrate the benefits of using Providentia to both miti-
gate uncertainty (e.g., environmental and system) and reduce the impact of secu-
rity threats against the RDM network. For this experiment, we set αfr = 0.375,
αnfr = 0.375, and αna = 0.25 to emphasize minimization of network adapta-
tions while considering maximization of FR/NFR satisficement. To demonstrate
statistical significance, 50 trials were conducted for each experiment. Moreover,
an equal number of experimental evaluations was performed per experiment.

4.2 Experimental Results

For this experiment, we define two null hypotheses. The first, H10, states that
“there is no difference between Providentia-optimized NFRs and those that
are unoptimized.” The alternate hypothesis, H11, states that “there is a differ-
ence between Providentia-optimized NFRs and those that are unoptimized.”
The second null hypothesis, H20, states that “there is no difference between
Providentia-optimized NFRs and those that are optimized by a requirements
engineer,” with the corresponding alternate hypothesis, H21, stating that “there
is a difference between Providentia-optimized NFRs and those that are opti-
mized by a requirements engineer.”

To demonstrate these hypotheses, Figure 5(a) shows three boxplots with
averaged fitness values calculated from Providentia-generated weights, from
FR weights optimized by an engineer, and FR weights randomly selected, for
NFR4. Similarly, Figure 5(b) presents the averaged fitness values for NFR7.
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Fig. 5: NFR fitness experimental results.



As the boxplots in Figure 5 demonstrate, Providentia-optimized NFRs im-
pact overall fitness significantly more than those set manually by a requirements
engineer or randomly selected (p < 0.055). The ideal utility value for a given
NFR is 1.0 to indicate complete satisfaction and therefore the boxplot closest
to 1.0 indicates optimal behavior. Table 1 provides the average utility values
(µ) and standard deviation (σ) for each NFR. The genetic algorithm is able to
effectively search for optimal FRs and weights when the system is subjected to
randomized sources of uncertainty at design time to harden the system against
uncertainty at run time, enabling a more robust set of NFRs in comparison to
randomly- or manually-defined NFRs.

NFR Random Manual Providentia

NFR1: Maximize µ: 0.654 µ: 0.615 µ: 0.905
[Reliability] σ: 0.325 σ: 0.191 σ: 0.149

NFR2: Maximize µ: 0.655 µ: 0.666 µ: 0.882
[Throughput] σ: 0.325 σ: 0.262 σ: 0.153

NFR3: Maximize µ: 0.875 µ: 0.743 µ: 0.975
[Speed] σ: 0.207 σ: 0.148 σ: 0.085

NFR4: Maximize µ: 0.802 µ: 0.736 µ: 0.979
[System Security] σ: 0.273 σ: 0.177 σ: 0.085

NFR5: Maximize µ: 0.621 µ: 0.742 µ: 0.925
[Secure Communication] σ: 0.273 σ: 0.191 σ: 0.146

NFR6: Maximize µ: 0.921 µ: 0.919 µ: 0.980
[Message Security] σ: 0.181 σ: 0.072 σ: 0.069

NFR7: Minimize µ: 0.821 µ: 0.758 µ: 0.926
[Power] σ: 0.270 σ: 0.172 σ: 0.188

Table 1: NFR average utility values and standard deviations.

Providentia also significantly decreased the amount of encountered FR vi-
olations when compared to manual and random search (p < 0.05) of FR com-
binations and their respective weights as seen in Figure 6. These results fur-
ther demonstrate the effectiveness of Providentia. The ideal number of FR
violations is 0, and once again the difference between Providentia and ran-
dom/manual results is significant. Providentia is able to not only significantly
improve NFR satisficement, but is able to do so while significantly reducing the
number of FR violations rather than creating extra overhead with additional
functionality at run time.

The overall intent of Providentia is to ensure continuing requirements satis-
ficement when faced with both uncertainty and NFR concerns. Given the overall
success of Providentia when optimizing FR selection weights and minimizing
violations, the presented results enable us to reject both H10 and H20, accept
H11 and H21, and conclude that an optimized weighting scheme can signif-
icantly improve overall requirements satisficement when compared to random
search or manually-derived weighting schemes, given that FFfr and FFnfr (c.f.,
Equations 3 and 4) form a major aspect of the overall fitness function.

5 The Wilcoxon-Mann-Whitney U-test was performed for all presented statistics.
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Fig. 6: FR violation experimental results.

Threats to validity. This research has been a proof of concept to demon-
strate how quantifying NFRs, elevating them to first-class entities, and auto-
matically optimizing them can significantly improve overall requirements satis-
ficement and minimize violations. One threat to validity includes the derivation
of FRs that negatively impact the satisficement of an NFR, as Providentia

currently only focuses on FRs that positively impact NFR satisficement. Addi-
tionally, the manual selection of the FR subset for each NFR could be argued
to use better selections. The scalability of Providentia with respect to large
numbers of goals and NFRs is a possible threat to validity as well.

5 Related Work

This section overviews related work in the areas of goal modeling, NFRs, and
using functional and non-functional satisficement for guiding the adaptation of
SASs.

Goal Modeling. Approaches similar to Providentia in goal modeling ad-
dress dependencies between FRs [21], use probabilistic methods to improve
NFR/FR satisficement [4, 22] or optimize SAS satisficement [3, 18, 33], and rep-
resent NFRs as soft goals [11, 35]. Our technique focuses solely on NFR/FR
dependencies, optimizing for run-time performance without prior knowledge of
system performance that most probabilistic methods require. We also do not dis-
cuss early-phase requirements engineering or high-level abstraction [7, 20], but
rather focus on a run-time model used by an SAS.

Non-Functional Requirements. Other techniques have been introduced
to quantify NFRs, generally representing NFRs as soft goals [16, 32, 34]. Our
technique is independent of any framework (e.g., NFR Framework, iStar, and



KAOS) and our weighted approach enables greater flexibility that an SAS can
use to find an optimal reconfiguration strategy at run time rather than modeling
NFRs at design time. Salehie et al. use a Goal-Action-Attribute Model (GAAM)
and an automated weighting scheme called Analytic Hierarchy Process to prior-
itize NFRs. Providentia uses a genetic algorithm to optimize goal and weight
selection rather than prioritization, as priorities may shift due to uncertainty
and requirement interactions. Contributing work has decomposed NFR behav-
iors into monitored patterns [28] and used quantifiable metrics to separate NFRs
from the FR goal model [29]. Providentia monitors requirements at run time
and does not separate NFRs from the goal model of FRs, as a separation does
not necessarily allow the requirements engineer to identify cross-cutting concerns
in NFRs.

6 Conclusion

This paper presented Providentia, a search-based technique for automatically
quantifying NFRs at run time by optimizing FR and weight selections at design
time. To demonstrate the effectiveness of Providentia, we used an industry-
provided RDM application that must distribute messages amongst a network of
RDMs that experienced uncertainty. Experimental results suggest that our ap-
proach significantly improves overall FR and NFR satisficement and decreases
goal violations when compared to NFRs configured manually by a requirements
engineer or configured by random search. Future directions for this research in-
clude performing the search process at run time while the system is subjected to
uncertainty, exploring different search heuristics for Providentia, and applying
Providentia to a real-world system. Furthermore, the RELAX language [25, 31]
and FLAGS [2] introduce flexibility into the satisfaction of selected requirements
via fuzzy logic that can directly be applied to Providentia to better measure
NFR satisfaction.
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