
Providentia: Using Search-Based Heuristics to Optimize

Satisficement and Competing Concerns between

Functional and Non-Functional Objectives in

Self-Adaptive Systems

Kate M. Bowersa, Erik M. Fredericksa, Reihaneh H. Hariria, Betty H. C.
Chengb

aOakland University, Rochester, MI USA
bMichigan State University, East Lansing, MI USA

Abstract

In general, a system may be subject to a combination of functional require-
ments (FRs) that dictate behavior and non-functional requirements (NFRs)
that characterize how FRs are to be satisfied. NFRs also introduce cross-
cutting concerns that may be difficult to predict, where the degree of satis-
faction (i.e., satisficement) of one NFR may be impacted by the satisficement
of one or more FRs/NFRs. In particular, self-adaptive systems (SASs) can
modify system configurations or behaviors at run time to continuously satisfy
FRs and NFRs. This paper presents Providentia, a search-based technique
to optimize the satisficement of NFRs in an SAS experiencing various sources
of uncertainty. Providentia explores different combinations of weighted
FRs to maximize NFR/FR satisficement. Experimental results suggest that
Providentia-optimized goal models significantly improve the satisficement
of an SAS when compared with manually- and randomly-generated weights
and subgoals. Additionally, we apply a hyper-heuristic (Providentia-SAW)
to balance the contribution of NFRs, FRs, and the number of adaptations
and further improve the Providentia technique. We apply Providentia

and Providentia-SAW to two case studies in different application domains
involving a remote data mirroring network and a robotic vacuum controller,
respectively.

Keywords: search-based software engineering, non-functional requirements,
self-adaptive systems, evolutionary computation, optimization

Preprint submitted to Journal of Systems and Software December 13, 2019

1. Introduction

A self-adaptive system (SAS) provides adaptation strategies for perform-
ing reconfigurations at run time to address unexpected issues that arise as a
result of uncertainty (e.g., adverse environmental conditions or unanticipated
issues in the system itself) [1, 2]. For example, a smart vacuum can be mod-
eled as an SAS, where a reconfiguration is modeled as updating the cleaning
path or navigation strategy as the vacuum encounters an obstacle, such as a
chair. Each reconfiguration performed by the system can incur a cost (e.g.,
computation time, memory resources, etc.) associated with initializing and
performing the adaptation. The SAS will use these adaptation strategies to
select an optimal configuration that enables requirements to be continuously
satisficed (i.e., degree of satisfaction) [3]. Generally, an SAS is governed by
functional requirements (FRs) that focus on a specific function or feature of
the system and can be mathematically quantified to monitor satisficement [4].
FRs in a smart vacuum may include maintaining battery power above 5% or
avoiding obstacles detected by a sensor. Introducing non-functional require-
ments (NFRs) makes the adaptation selection process more difficult as NFRs
specify properties and/or characteristics about system operations, tend to be
qualitative, and may not be easily mathematically quantifiable (e.g., speci-
fying resiliency and efficiency) [4, 5]. An example NFR for a smart vacuum
SAS may be to optimize performance by cleaning as much dirt as quickly
as possible, in contrast to an FR that mandates the vacuum to clean at
least 50% of the room. Quantifying NFRs often relies on domain knowledge
and may not be optimal given the changing environmental conditions that
an SAS must address [5]. Therefore, this paper describes Providentia and
Providentia-SAW, search-based techniques performed at design time that
automatically determine an optimal set of FRs to support each NFR in an
SAS.1

Current techniques to satisfy NFRs in SASs do not offer concrete nu-
merical values to be evaluated at run time. In the KAOS goal modeling
framework, NFRs are incorporated as behavioral or soft goals [4]. A KAOS
soft goal describes preferences of system behaviors that tend to be qualitative
in nature, thereby making the determination of an optimal reconfiguration
strategy more challenging [4]. In contrast, KAOS FRs can be quantified via
utility functions and provide a concrete numerical basis for comparisons be-

1A preliminary version of Providentia was presented at SSBSE 2018 [6].

2

tween reconfiguration strategies [3]. NFRs in the iStar framework are also
modeled as soft goals and use the ++/+ or −−/− operators to respectively
indicate that an NFR makes/helps or breaks/hurts an FR [7]. The iStar
operators are also qualitative and can be challenging to use in an SAS, as
qualitative descriptions are not necessarily as easy to use when making an
adaptation compared to quantitative descriptions. Similar to Providentia,
the Analytic Hierarchy Process (AHP) decomposes NFRs into one or more
weighted FRs using a prioritization schema [8]. However, prioritizations in
an SAS may change drastically or even be inapplicable at a given instance
in time (e.g., most or all requirements have equal priority) as the system
experiences various forms of uncertainty due to changing environmental and
system conditions. In a smart vacuum SAS, environmental uncertainty can
be described as the positioning of obstacles in a room, stairs or other changes
in elevation, the amount of dirt to be cleaned, and the number of water pud-
dles to avoid. Uncertainty with regard to system conditions relates to sensor
failures, damage that occurs in an obstacle collision, and motor degradation
in the wheels. Each of these conditions are subject to change and the vacuum
must be able to satisfy its requirements for each combination of uncertainties.

This paper describes Providentia [6] and Providentia-SAW (an exten-
sion), two techniques that address the challenges of quantifying and ana-
lyzing NFRs at run time in SASs. We introduce Providentia within the
context of SASs to minimize the number of reconfigurations performed and
achieve optimal weighted combinations that maximize requirement satisfice-
ment. Non-SASs can also apply Providentia to obtain optimal weighted
combinations for each NFR given that the utility functions are adjusted ac-
cordingly. However, the effectiveness of Providentia is limited in non-SASs
as the system configurations are static and cannot be reconfigured at run
time. Therefore, we limit our scope to SASs. Providentia is a design-time
technique that takes into account uncertainty from the environment and the
system itself and optimizes FR/NFR relationships, where each relationship
contributes to quantifying NFR objectives at run time. Each FR is asso-
ciated with a utility function that specifies a mathematical expression of
requirement satisficement [3]. Each NFR comprises a combination of one or
more FRs using a linear-weighted sum to indicate the relative impact that
an FR has in contributing to the satisficement of the NFR’s objectives [8].
For example, the NFR to maximize performance uses four FRs (i.e., Achieve
50% clean, Achieve cleaning efficiency, Achieve cleaning effectiveness, and
Maintain safety) to represent performance objectives that might otherwise

3

be more difficult to quantify. Providentia explores different combinations
of weights at design time to find an optimal linear-weighted expression that
makes the system more robust to various forms of uncertainty at run time.
Providentia-SAW, in contrast, is a hyper-heuristic [9] approach to adjust
the weights of the linear-weighted sum to respond to changing environmen-
tal conditions.

Providentia is a search-based evolutionary technique that assesses the
system’s run-time behavior via an executable system specification that is
subjected to randomly-generated sources of uncertainty. The search process
identifies optimal goal model configurations, namely the set of FRs and their
corresponding weights for a given NFR, to maximize FR/NFR satisficement.
Providentia uses a genetic algorithm [10] as a search heuristic, where the
search space is the weight of each FR set for a given NFR, and the output is
a set of optimal weight assignments that results in the highest satisficement
of the NFR when faced with uncertainty. The optimal weight assignments
determined by Providentia are then applied to the SAS at run time. By
evaluating traditionally soft goals with FR metrics during execution, the
SAS is able to perform online reconfigurations in response to both NFR and
FR objectives, where traditionally only FR objectives are mainly considered.
Furthermore, the SAS can perform better at run time by optimizing the
weighted contributions of FRs to each NFR, as a requirements engineer may
not be able to foresee the impact of random sources of uncertainty when
determining the weight assignments at design time.

Since it may be difficult to achieve an optimal weighting scheme between
NFRs, FRs, and the number of adaptations, this paper extends Providentia
[6] by introducing a stepwise adaptation of weights (SAW) hyper-heuristic [11,
12, 13] to optimize the overall fitness value of the SAS for a given set
of environmental conditions. Rather than manually selecting weights for
the overall fitness function of the system, either according to preference or
empirical evidence, Providentia-SAW more accurately determines an opti-
mal set of weights that better guide Providentia’s search procedure. As
Providentia determines the optimal set of FRs and the weighting scheme
for each NFR, Providentia-SAW runs in tandem to determine the weights
assigned to balance NFR fitness values (i.e., satisficement), FR fitness val-
ues, and the number of adaptations to yield an optimal overall fitness value.
Note, the term weights for Providentia apply to the NFR utility functions,
whereas Providentia-SAW weights apply to the fitness sub-functions that
comprise the Providentia genetic algorithm.

4

We illustrate the effectiveness and domain independence of Providentia
and Providentia-SAW with two case studies: a remote data mirroring (RDM)
network and an intelligent robotic vacuum. The RDM is an industry-provided
application that replicates and disseminates messages to each RDM within
the network [14, 15]. The RDM performs dynamic reconfigurations in re-
sponse to uncertainty due to dropped or delayed messages, sensor noise, and
unexpected server and network link failures. Results from our preliminary
work [6] have shown that Providentia-optimized goal models result in sig-
nificantly higher fitness values compared to goal models with manually- and
randomly-assigned FR weights. Furthermore, results also indicated that the
number of FR violations was significantly reduced when Providentia was
used. The second case study of a smart vacuum system (SVS) demonstrates
the application of Providentia in a different domain. The SVS is an au-
tonomous robotic vacuum modeled as an SAS and tasked with cleaning a
given environment, where adaptations are performed at run time to switch
between different configuration modes [16, 17]. Experimental results suggest
that the SVS goal model optimized with Providentia performs better than
SVS goal models with manually- and randomly-selected FR weights. Finally,
results from both the RDM and SVS case studies indicate that the overall
fitness can be further improved with Providentia-SAW.
Extensions. This paper extends an earlier description of the Providentia

technique along several dimensions. First, we introduce Providentia-SAW

that makes use of a second level of abstraction to explore the trade-offs be-
tween non-functional, functional, and adaptive requirements. Then we apply
Providentia to a second case study, an autonomous robotic vacuum (SVS),
to further demonstrate the technique’s effectiveness in a different application
domain. Providentia-SAW is also applied to this second case study. Fi-
nally, this paper includes additional details about the overall techniques and
expands the related work discussion.

The remainder of this paper is organized as follows. Section 2 provides
relevant background information on SASs, the RDM and SVS, goal model-
ing, NFRs, utility functions, and genetic algorithms. Section 3 presents the
Providentia approach and introduces the integration with Providentia-

SAW. Section 4 provides the experimental results of applying Providentia

and Providentia-SAW to the RDM and SVS applications, respectively. Fol-
lowing, Section 5 presents a discussion of the results and threats to validity.
Section 6 overviews the work related to Providentia and Providentia-SAW,
and finally, Section 7 summarizes the findings and overviews future work.

5

2. Background

This section provides relevant background information on SASs, the case
studies, NFRs, utility functions, and genetic algorithms.

2.1. Self-Adaptive Systems

The explosion of the number of possible combinations of system and envi-
ronmental parameters often inhibits an engineer’s ability to fully enumerate
each combination [18, 19]. System requirements and objectives may also
change following deployment, potentially requiring numerous software up-
dates or patches. An SAS provides an approach for enabling continuous re-
quirements satisfaction by dynamically adapting the system’s configuration
and/or behavior at run time [2, 20, 21]. As such, the RDM and SVS appli-
cations has been modeled as SASs to address uncertainty in the environment
and the system itself [21].
Uncertainty. Given the exponential number of system and environmen-
tal combinations [18, 19], coupled with the possibility that software re-
quirements and/or models will change following deployment (potentially re-
quiring new software or bug fixes), it is difficult to accurately predict or
model all situations an SAS may face throughout its lifetime. An SAS pro-
vides an approach for continuous requirements satisfaction by enabling self-
reconfiguration at run time to mitigate such issues [2, 20]. SASs are generally
guided by a run-time feedback loop such as MAPE-K, comprising monitoring,
analyzing, planning, and executing components, linked together by common
knowledge of the system and its elements [1]. This feedback loop enables an
SAS to change its configuration and/or its behavior, at run time, to better
mitigate current operating conditions or manifested uncertainties.

While many forms of uncertainty exist [22], we focus on known unknowns
and emergent behaviors/feature interactions. Known unknowns tend to deal
with knowledge of the system’s operating conditions, where data may change
unexpectedly, be inaccurate, or be in an unanticipated state [23, 24]. Emer-
gent behaviors/feature interactions occur when multiple subsystems interact,
introducing unexpected or possibly dangerous new behaviors that were not
explicitly considered at design time [25].
Requirements Monitoring. While requirements monitoring is not specific
to the SAS domain, monitoring does feature prominently in the MAPE-K
loop for providing feedback to the SAS adaptation engine [1]. Specifically,
an SAS that monitors requirements can self-reconfigure in the event that a

6

requirement is violated or unsatisfied. To quantify requirements at run time,
utility functions are often used to provide a mathematical quantification [26]
that indicates the degree to which requirements are satisfied. The Rainbow
framework uses utility functions at an architectural level [27] and was our
initial inspiration for leveraging utility functions, however in this work, we
apply them at the requirements level [26].

2.2. Case Studies

This section provides an overview of the two case studies used to demon-
strate the Providentia technique: the RDM and the SVS.

2.2.1. Remote Data Mirroring

RDM is a technique to protect data by minimizing data loss and maximiz-
ing the availability of data [14, 15]. The RDM technique disseminates data
replicates to other servers (i.e., data mirrors) in physically remote locations.
Each network link between data mirrors is associated with an operational
cost. Furthermore, each link has a throughput, latency, and loss rate to col-
lectively measure the performance and reliability of the RDM as a whole.
The RDM must optimize the number of links to send messages between data
mirrors efficiently without exceeding the budget.

Requirements may become unsatisfied in the face of various forms of un-
certainty, such as unexpectedly dropped or delayed messages, random net-
work link or data mirror failures, and noise in the network links or data mirror
sensors. An RDM can be modeled as an SAS [28], where reconfigurations can
change the network topology (e.g., a minimum spanning tree or a redundant
topology) as well as the manner of data propagation among nodes to ensure
that requirements are continuously satisfied. The reconfiguration strategies
involve modifying the status of data mirrors impacted by uncertainty. The
status of a data mirror can be active (i.e., can send and receive messages),
passive (i.e., cannot send messages but can receive messages), or quiescent
(i.e., cannot send or receive messages).

2.2.2. Smart Vacuum System

Smart vacuums such as iRobot’s Roomba2 are available in the consumer
market to clean dirt by navigating across a room and around obstacles au-
tonomously without guidance from the user. The SVS is an open-source

2See http://www.irobot.com

7

simulation of a Roomba. The SVS operates by using input from sensors
(e.g., bumper sensors and motor sensors) to plan a path in a given area and
follow the path to clean its local environment. For the purposes of our sim-
ulation, the SVS contains bumper sensors to detect when the robot collides
with an item (e.g., a wall or leg of a chair), cliff sensors to prevent the robot
from damaging itself by falling down a flight of stairs, and motor sensors to
provide feedback on the movement of the robot (e.g., velocities of the wheels
and power modes for the suction). A controller uses the sensor data to plan
an optimal cleaning path and minimize battery consumption.

The SVS can be modeled as an SAS to reconfigure multiple modes dur-
ing run time when faced with various forms of uncertainty (e.g., noisy sen-
sor data, amount and location of dirt within a room, obstacle encounters,
etc.) [16, 17, 21]. For example, the SVS can change the pathfinding al-
gorithm, power modes with regard to movement and suction, and obstacle
avoidance measures at run time to maintain requirements satisfaction.

2.3. Goal-Oriented Requirements Modeling

Goal-oriented requirements modeling (GORE) is an approach that uses
goals to model the behaviors of the system [4]. A goal is a desired system be-
havior achieved through interactions with agents, where an agent is a system
component that performs specific actions according to goals. A requirement
is a goal that interfaces with a single agent. An expectation is a require-
ment where the agent is in the environment, compared to agents within the
system itself. Requirements and goals can be further classified as functional
and non-functional. FRs specify what services are to be provided while NFRs
specify how the FRs are to be satisfied.

GORE uses a directed acyclic graph, where each node represents a goal
or requirement and each edge represents a goal/requirement refinement [4].
KAOS and iStar extend GORE by adding additional goal refinements [4, 7,
29]. Figure 1 presents a KAOS goal model of the RDM application, and Fig-
ure 2 presents a KAOS goal model of the SVS application.3 KAOS uses AND-
and OR-refinements, where an AND-refined goal is satisfied only when all of
its subgoals are satisfied (e.g., Goal (A) in Figure 1 is satisfied only if both
Goals (B) and (C) are also satisfied) and an OR-refined goal is satisfied when

3This work does not use the KAOS formal refinement infrastructure.

8

(J) (L) (M) (N)

Maintain
[DataAvailable]

Achieve
[Network

Partitions == 0]

Achieve [Measure
Network Properties]

Maintain [Operational
Costs ≤ Budget]

Network
Actuator

Achieve [Cost
Measured]

Achieve
[Activity

Measured]

Achieve
[LossRate

Measured]

Link
Sensor

(A)

(B)

(D) (F)Achieve [Minimum
Num Links Active](E)

RDM
Sensor

…

Achieve
[Workload
Measured]

Achieve
[Capacity

Measured]

Achieve [Link
Deactivated]

(O)
Achieve

[Link
Activated]

(P)(K)

Achieve [NumDataCopies
 == NumServers]

(C)

Network
Controller

Adaptation
Controller

…

Achieve [DataAtRisk
≤ RiskThreshold]

(G) Achieve [DiffusionTime
 ≤ MaxTime]

(H) Achieve [Adaptation
Costs == 0]

(I)

(Q)
Achieve

[Send Data
Synchronously]

(R)
Achieve

[Data Sent ==
Data Received]

(S)
Achieve

[Send Data
Asynchronously]

(T)
Achieve

[Data Received
== Data Sent]

(U)
Achieve

[Num Active Data Mirrors
== Num Mirrors]

(V)
Achieve

[Num Passive Data
Mirrors == 0]

(W)
Achieve [Num

Quiescent
Data Mirrors == 0]

 Goal

Refinement

Agent
Requirement /
Expectation

Legend

Figure 1: RDM goal model.

9

Achieve [50%
Clean]

Maintain
[Suction]

Achieve
[Movement]

Achieve [Cleaning
Efficiency]

 Vacuum

Achieve [Reduced
Speed]

Achieve [Normal
Speed]

Achieve [Reduced
Suction]

Achieve [Normal
Suction]

 Motors

(A)

(B)

(E) (G)

(K) (L) (M) (N)

Achieve [BatteryPower
> 5%]

(F)

 Battery
 Sensor

…

Achieve [Cleaning
Effectiveness]

Achieve [Path Plan
for 10 Seconds]

Achieve [Spiral
Path]

Achieve [Straight
Path]

Achieve [Random
Path]

 Bumper
 Sensors

Achieve [Clean Area
for 20 seconds]

(C)

(H) (I)

(O) (P) (Q)

Maintain
[Safety]

FailSafeEnabled If
SafetyCheckFailure

Avoid
[Obstacles]

Avoid [Self
Damage]

Object
Sensor

 Suction
 Sensor

 Cliff
 Sensor

(D)

(J)

(R) (S)

 Internal
 Sensor

 Controller

…

 Goal

Refinement

Agent

Requirement / Expectation

Legend

Figure 2: SVS goal model.

10

at least one of its subgoals is satisfied (e.g., Goal (G) in Figure 1 is satisfied if
either Requirements (Q) or (R) are satisfied). Furthermore, KAOS FRs can
be classified as invariant or non-invariant. An invariant goal, denoted by the
keywords “Maintain” or “Avoid,” must always be satisfied. If any invariant
goal is unsatisfied then the system fails. For example, the safety-related goals
in Figure 2 are denoted as invariant goals to emphasize the safety of the SVS.
A non-invariant goal, denoted by the keyword “Achieve,” may be temporar-
ily unsatisfied due to uncertainty. For example, the path planning goals and
requirements of the SVS in Figure 2 (e.g., Goals (C), (H), (I), (O), (P), and
(Q)) are non-invariant goals to demonstrate that the SVS may temporarily
have a less-than-optimal path to clean a room.

2.4. Non-Functional Requirements

NFRs specify quality constraints on a system, such as performance or re-
liability [30], and are often difficult to quantify given their subjective nature.
Furthermore, NFRs may introduce cross-cutting concerns given the broad
impact on the overall system [30]. For example, the RDM may have one
NFR to maximize performance that keeps as many data mirrors in an active
state as long as possible. However, there may be a second NFR to mini-
mize power consumption that puts data mirrors in a quiescent state, directly
contradicting the performance NFR. Such cross-cutting concerns introduce
further complexity in measuring the satisfaction of NFRs. Although other ap-
proaches to quantify requirement satisficement have been introduced [26, 27],
such models often require detailed knowledge of both the system and its en-
vironment that may not always be possible with the wide impact of NFRs.

Therefore, Providentia uses FRs already defined as part of the system
to quantify NFR objectives. Figure 3 shows a sample NFR for the RDM
application to Minimize [Power], where many factors may impact power
consumption (e.g., Goals (A), (E), (I), (V), and (W) from Figure 1). For
the purposes of this paper, Figure 3 is shown separately from Figure 1 but
is intended to be an extension of the FR goal model rather than a separate
NFR goal model. We use NFRs to represent all non-functional goals and
requirements and FRs to represent all functional goals and requirements.
The cloud node in Figure 3 represents a single NFR. Each parallelogram node
represents a goal or requirement/expectation that a requirements engineer
designates to have an impact in the satisficement of NFR7. Each edge depicts
the relative contribution, or weighted sum value, of each FR to NFR7. Note
that the sum of the weights is 1.0.

11

Similarly, Figure 4 shows a sample NFR for the SVS application to
Minimize [Cost], where cost refers to avoiding damage to obstacles (e.g.,
damaging the legs of a dining room chair) and avoiding damage to the smart
vacuum itself (e.g., hitting an obstacle that damages a sensor or falling off a
ledge).

Achieve [Minimum
Num Links Active]

Maintain
[DataAvailable]

Achieve [Adaptation
Costs == 0]

Achieve
[Num Passive Data

Mirrors == 0]

Achieve
[Num Quiescent

Data Mirrors == 0]

0.3 0.30.1
0.1

0.2

Minimize
[Power]

NFR7Goal Requirement /
Expectation

NFR

Key

Weighted
decomposition

x

(A) (E) (I) (V) (W)

Figure 3: RDM NFR7: Minimize [Power].

Achieve [Battery
Power > 5%]

Maintain
[Safety]

FailSafeEnabled if
SafetyCheckFailure

Avoid
[Obstacles]

Avoid
[Self Damage]

0.15 0.20.3
0.15

0.2

Minimize
[Cost]

NFR1Goal
Requirement /
Expectation

NFR

Key

Weighted
decomposition

x

(D) (F) (J) (R) (S)

Figure 4: SVS NFR1: Minimize [Cost].

2.5. Utility Functions

A utility function can be used to calculate the satisficement of FRs in
SASs [26, 31, 32]. The utility function for a specific, single requirement is
evaluated and returns a utility value. A utility value of 1.0 indicates the
highest degree of satisfaction and a utility value of 0.0 indicates the lowest
degree of satisfaction. Utility values between 0.0 and 1.0 indicate the degree
of satisficement for a given requirement [3]. Equation (1) shows a utility

12

function associated with Goal (V) from the RDM application in Figure 1,
where n indicates the number of passive data mirrors.

util(goalV) =

1.0 if n == 0

f(x) if 0 < n < 20% of total nodes

0.0 if n ≥ 20% of total nodes

(1)

Goal (V) is considered to be completely satisfied if no data mirrors are
in a passive state (i.e., can receive but not send messages) and evaluates
to a utility value of 1.0. Goal (V) completely fails if more than 20% of all
data mirrors are in a passive state. Otherwise, if the number of passive data
mirrors is greater than 0% but less than 20%, then the f(x) value is linearly
determined. For example, if 10% of the data mirrors are in a passive state,
then Goal (V) will have a utility value of 0.5.

2.6. Genetic Algorithms

A genetic algorithm is a heuristic used to search a space of solutions to find
an optimal result [10]. The evolutionary process of a genetic algorithm gen-
erates a population of candidate solutions, performs crossover and mutation
operations, and evaluates the fitness of each solution within the population.
The evolutionary process repeats until the specific number of generations, or
iterations, is reached. We next describe each of these activities.

2.6.1. Population Generation

A genetic algorithm may start with a randomly-generated set, or pop-
ulation, of candidate solutions in the first generation. The population of
individuals represents the number of candidate solutions to be evaluated
through the evolutionary process. For each generation, evolutionary opera-
tors such as crossover, mutation, and selection are applied to each individual
to generate new members of the population and evaluate fitness. Ideally, the
most fit individuals are preserved during the evolutionary process, with the
best performing individual being considered an optimal result.

2.6.2. Crossover and Mutation

Crossover and mutation are evolutionary operators that generate new in-
dividuals (i.e., children) during the evolutionary process. While there are
many different types of crossover and mutation, we use two-point crossover
and single-point mutation. Two-point crossover selects two individuals, ei-
ther randomly or as a result of tournament selection [10], and then selects

13

two random indices to denote cut points. Two new children are then gener-
ated by combining the genetic material from both parents, where genomes
are swapped between the two cut points. Single-point mutation selects a
single index from a candidate parent and then randomly mutates the gene
at that location, creating a new child. Ideally, crossover preserves the best
characteristics of its parents, and mutation introduces diversity to ensure
that the search procedure does not become “stuck” at a local optimum.

2.6.3. Fitness Evaluation

Populations are evaluated according to fitness functions, where each in-
dividual within a population is assigned a fitness value. Fitness values de-
termine those individuals that performed better than others. Often, genetic
algorithms use a form of tournament selection where a specific number of the
highest performing individuals are used in the next generation. In this way,
the genetic algorithm is guided toward an optimal value by carrying over the
best solutions through each generation but explores different combinations
via crossover and mutation to obtain a global optimal solution.

2.6.4. Hyper-heuristic Algorithms

Hyper-heuristic algorithms are used to search a space of meta-heuristics
[9]. Rather than exploring the problem space for a solution (i.e., a meta-
heuristic), hyper-heuristics search among all the solutions to the problem
space. Hyper-heuristics operate at an abstraction level above meta-heuristics
[33]. For example, the SVS faces a variety of problems (e.g., cliff detection,
object collision, water spots to avoid, etc.). Providentia is a meta-heuristic
that searches for the most effective solution (i.e., combination of FR weights
for each NFR) to satisfy the system requirements to the highest degree.
However, satisfying the system requirements to the highest degree is a balance
between satisfying FRs, NFRs, and minimizing the number of adaptations
performed. Therefore, we apply a hyper-heuristic to search for a solution
among the solutions that maximizes overall system satisficement. For the
purposes of this paper, we classify Providentia-SAW as a hyper-heuristic
that further improves the Providentia meta-heuristic genetic algorithm.

3. Approach

This section introduces Providentia, our technique that analyzes the
weighted contributions of FRs to each NFR in the SAS requirements specifi-
cation and/or goal model. Providentia determines an optimal combination

14

of weights that yields the highest overall satisfaction of the entire goal model
(i.e., including NFR and FR satisficement). The Providentia technique
is intended to be an add-on feature to make a system more robust to un-
certainty. Providentia assumes that the system is fully operational and
contains models of FRs, NFRs, and mechanisms to measure how well those
requirements are being satisfied.

The following sections outline the base technique using the RDM case
study [6] as a motivating example and extends previous work to include the
SVS case study. First, we discuss Providentia with respect to expected in-
puts and outputs. Next, we describe the process of automatically optimizing
the input goal model using a genetic algorithm. Finally, we introduce the
Providentia-SAW technique to balance the satisficement of FRs, NFRs, and
the number of adaptations.

3.1. Providentia: Assumptions, Inputs, and Outputs

Providentia requires four inputs: (1) a goal model of the SAS, con-
sisting primarily of FRs but may include NFRs defined by a requirements
engineer,4 (2) a list of NFRs with a set of FR suggestions for each, (3) a set of
utility functions to measure the satisficement of FRs, and (4) an executable
specification with defined sources of uncertainty (for the RDM and SVS case
studies, we use environmental and system uncertainty). Each of these in-
puts are expected to be previously defined by one or more engineers. The
sources of uncertainty are parameters (e.g., sensor values, number of dropped
messages in a network, etc.) whose values change during runtime that may
cause the input FRs and NFRs to become unsatisfied, and therefore trigger a
reconfiguration. The Providentia technique explores interactions between
requirements as well as system behavior while subjected to uncertainty that
an engineer may not be able to foresee when designing the system. The out-
put of Providentia is a goal model with optimized FR/NFR relationships.
Note that the Providentia technique is only as good as the accuracy of the
input data (i.e., we assume the set of FRs for a given NFR is accurate and
that the executable specification is not missing any sources of uncertainty).

Goal model. A KAOS goal model provides Providentia with a spec-
ification of the FRs and NFRs in the SAS. For example, Figures 1 and 2
demonstrate the RDM and SVS goal models, respectively.

4For the purposes of this paper, the term “requirements engineer” refers to the authors
who performed the manual choices for the NFRs.

15

Utility functions. Each FR in the input KAOS goal model shall have a
corresponding utility function to evaluate SAS requirements at run time [31,
32]. A utility function maps the FR to a utility value within [0.0, 1.0] to
represent the degree to which the FR is satisfied. A requirements engineer
is expected to provide a set of utility functions that correspond to the input
goal model. A sample utility function is demonstrated in Equation (1).

Applicable set of FRs mapped to NFRs. A requirements engineer
must provide, in addition to the goal model, a set of FRs that may have an
impact in the satisficement of an NFR, with the set of NFRs comprising the
non-functional properties intended for the system. For example, Figure 3 for
the RDM case study shows an example of an applicable set of FRs, namely
Goals (A), (E), (I), (V), and (W), that seem most relevant in minimizing
power consumption. However, the requirements engineer may consider ex-
panding the set of five FRs to include Goals (B), (K), (M), (O), (P), and (U)
from Figure 1.

Executable specification. An executable specification or simulation
is required in order for Providentia to evaluate the overall fitness value of
the SAS and determine an optimal combination of FR/NFR weights. We
use a simulation of both the RDM and SVS case studies. The RDM is an
industry-provided simulation shared with the authors and the SVS is an on-
going part of the authors’ research lab. The specification provides the utility
values to measure how well the requirements were met at a given instance in
time during the simulation so that Providentia can determine where to fur-
ther improve requirement satisficement. The executable specification should
also include known sources of uncertainty anticipated by the requirements
engineer, both in the environment and the system itself (e.g., liquid spills,
sensor noise, etc.). This information better guides the search process at de-
sign time and makes the system more robust to known and unknown sources
of uncertainty at run time. Moreover, the executable specification must in-
clude adaptation mechanisms for the NFRs, should they be violated. The
requirements engineer is expected to identify and implement the adaptation
mechanisms. Providentia does not change any reconfigurations but rather
tries to minimize the number that occur, as each system reconfiguration in-
curs a cost (e.g., computation time, memory used, etc.). For example, if an
NFR for maximizing performance is violated, then a reconfiguration strategy
(e.g., reconfiguring the RDM network overlay) must be defined in addition
to those adaptations already defined for FR violations.

16

The executable specification acts as a simulation environment where the
system is subjected to various randomized forms of uncertainty (e.g., where
the RDM experiences a random number of dropped messages, or random
connections are lost). The executable specification is not limited to any par-
ticular tool, programming language, or environment. Providentia observes
how the system behaves and the degree to which FRs and NFRs are sat-
isfied while experiencing adverse conditions. Providentia takes note of the
weighted combinations that fulfill both FRs and NFRs to the highest de-
gree and returns the weight assignments. The executable specification can
be used as input to Providentia if the specification effectively simulates
system behaviors with internal and environmental uncertainty.

Output. The output of Providentia is (1) an NFR goal model inte-
grated with the input FR goal model, (2) for each NFR, a set of FRs that
collectively contribute to the satisficement of the NFR, and (3) an optimal
weight value assigned to each FR. Note that a weight value of 0.0 for an FR
indicates that the FR did not at all contribute to the satisficement of the
NFR. For example, the initial set of applicable FRs given for NFR7 from the
RDM application in Figure 1 were Goals (A), (B), (E), (I), (K), (M), (O),
(P), (U), (V), and (W). Providentia determined the most optimal weights
for each goal respectively to be as follows: B: 0.237144, E: 0.241000, K:
0.007185, M: 0.373794, O: 0.049442, U: 0.067218, V: 0.024216. The weight
assignments to Goals (B), (E), and (M) indicate that maintaining costs be-
low the budget, keeping the minimum number of links active, and achieving
an accurate measure of the workload most significantly impact the overall
power consumption of the RDM. Goals (K), (O), (U), and (V) minimally
impacted the satisfaction of power requirements. Goals (A), (E), (I), (P),
and (W) have weights 0.0 as they did not contribute to minimizing power
consumption. The utility function for NFR7 is calculated by summing the
products of the weight and FR utility value for each nonzero FR.

3.2. Providentia Technique

This section describes the details of Providentia, comprising a genetic
algorithm [10] to search for optimal FR weights that contribute to each NFR
in an SAS. Figure 5 illustrates a data flow diagram of the Providentia

technique with each step further described in detail.
(1) Define Solution Structure. Each of Providentia’s candidate solu-
tions (i.e., the weights of the FRs associated with an NFR) is encoded in
a genome shown in Figure 6. The genome as a whole consists of all NFRs

17

Legend

process

agent

GA process

data store

data flow

GA data flow

(1)
Define

Solution
Structure

Requirements
Engineer

FRs, NFRs, constraints

FR/NFR relationship

(2)
Configure

Search
Process

Genome
structure

Configuration

(3)
Evaluate
NFR Goal
Models

(4)
Select

NFR Goal
Models

(5)
Generate
NFR Goal
Models

Candidate
goal models

Goal models,
fitness values

Most fit
optimized

models

New
goal models

Optimal
goal

models

Goal ModelGoal Model Utility functionsUtility functions Executable specificationExecutable specification Source of uncertaintySource of uncertainty

Optimal goal
models

Optimal goal
models

Figure 5: Data flow diagram of Providentia technique [6].

NFRnGenome:

NFR7

0.3 0.0 0.1 0.1 0.0 0.0 0.0 0.0 0.3 0.20.3 0.0 0.1 0.1 0.0 0.0 0.0 0.0 0.3 0.2

Goal: A B E I K M O P V WA B E I K M O P V W

...[]][
Figure 6: Providentia sample genome.

18

in the SAS. For example, the RDM case study has 7 NFRs. A single NFR
is referred to as a sub-genome, denoted by the bold border in Figure 6. A
sub-genome is broken down into genes (i.e., corresponding weights for one
NFR), where a single gene is a weight corresponding to a single FR. The sum
of weights within one sub-genome (i.e., within one NFR) must be equal to
1.0.
(2) Configure Search Process. The search process of a genetic algorithm
is controlled by the population size, number of generations, crossover rate,
mutation rate, and selection rate. Based on empirical evidence on conver-
gence rates [6], we specify the following configuration parameters: population
size 20, 50 generations, 25% crossover rate, 50% mutation rate. With regard
to the selection rate, we use the tournament selection approach [10] where the
three individuals with the highest utility values become parents of the next
generation. Larger values for population and generation sizes were consid-
ered (e.g., 25-50 population individuals and 50-100 generations) but optimal
convergence was discovered on average at the specified values.
(3) Evaluate NFR Models. Once the search process has been appropri-
ately configured, each individual candidate solution is input to the executable
specification and evaluated to compare against other individuals within the
population. The overall fitness function for the SAS is shown in Equation (2)
and evaluates the satisfaction of FRs, NFRs, and the number of adaptations
(NA) into a single fitness value.

FF =

{
αNFR ∗ FFNFR + αFR ∗ FFFR + αNA ∗ FFNA iff invariants true

0.0 otherwise

(2)
Equation (2) is a linear-weighted sum, where αNFR, αFR, and αNA are

further optimized by the Providentia-SAW technique (Providentia-SAW is
described in Section 3.3). The weights must cumulatively sum to a value
of 1.0. The terms FFNFR and FFFR represent fitness sub-functions. Note
that if any invariant goals or requirements are unsatisfied, then the system
is considered to be failed and evaluates its fitness value to be 0.0. Although
many other approaches exist to combine fitness sub-functions, we find that a
linear-weighted sum balances competing concerns between requirement sat-
isficement and adaptations adequately for this experiment.

The fitness sub-function to evaluate the satisficement of NFRs is shown
in Equation (3).

19

FFNFR =

∑|NFRs|
i=1 utility valueNFRi

|NFRs| ∗ timesteps
(3)

The numerator in Equation (3) represents the sum of utility values for all
NFRs in the SAS. For example, the RDM application contains seven NFRs,
resulting in a numerator evaluation of: utility valueNFR1 + utility valueNFR2

+ ... + utility valueNFR7 . The denominator of Equation (3) is the number
of NFRs in the SAS (e.g., seven for the RDM) multiplied by the number of
timesteps run in the executable specification.

The utility value calculation of each NFR from the numerator in Equation
(3) is shown in Equation (4), where n refers to the number of the NFR (e.g.,
NFR1, NFR2, etc.).

utility valueNFRn =

|FRNFRn |∑
i=1

utility valueFRi
∗ weightFRi

(4)

Equation (4) calculates a utility value for one NFR by evaluating the
utility function of each supporting FR (e.g., Equation (1) supplied by the
input utility functions), multiplying the utility value with its corresponding
weight, and then summing the results for all supporting FRs for a given NFR.
The term weightFRi

represents the weights present in Providentia’s genes
and is the focus of the technique’s optimization.

The fitness sub-function for the FFFR term from Equation (2) is shown
in Equation (5).

FFFR =

∑|FRs|
i=1 utility valueFRi

|FRs| ∗ timesteps
(5)

Equation (5) sums all of the utility values for the functional requirements
and goals of the SAS in the numerator and divides by the product of the
number of FRs and the number of timesteps in the executable specification.

Finally, the equation to minimize the number of adaptations performed
by the SAS is shown in Equation (6), where |adaptations| refers to the total
number of reconfigurations performed by the SAS and |faults| reports the
total number of adverse conditions introduced within the executable specifi-
cation.

FFNA = 1.0− |adaptations|
|faults|

(6)

20

Equation (6) defines the term FFNA from Equation (2). A minimized number
of adaptations performed by an SAS reduces the overall disruption of the
system.
(4) Select NFR Models. Providentia uses tournament selection to select
the genomes with the highest fitness value among k genomes to be used as a
parent for the next generation. The remaining individuals not chosen in the
population are removed from consideration.
(5) Generate NFR Models. When the most fit individuals from the
population are selected, Providentia then performs crossover and mutation
to obtain new individuals for the following generation. Providentia uses
two-point crossover that selects two points on a genome within an NFR
(i.e., crossover does not occur between different NFRs) and swaps the genes
with a second genome, creating two new candidate solutions. Furthermore,
Providentia performs single-point mutation that selects a single gene (i.e.,
FR weight) and randomly generates a value within ±20% of its original
value. Note that although values are modified via crossover and mutation,
the weights must still be normalized within a particular NFR/sub-genome.

Steps (3) - (5) are applied iteratively until the number of generations is
reached. When the genetic loop concludes, Providentia returns a set of
optimized weights of FRs for each NFR.

3.3. SAW Integration

This paper extends the original Providentia technique [6] with SAW op-
timization [13, 34] to explore a search space containing an optimal weighting
scheme that balances the competing concerns between FR satisficement, NFR
satisficement, and the number of SAS adaptations. Our preliminary work
used an empirically chosen weighting scheme where the terms from Equa-
tion (2) were set as follows: αNFR = 0.375, αFR = 0.375, and αNA = 0.25.
However, the chosen weights may not have considered all possible values in
the search space, given the uncertainty surrounding an SAS in terms of its
environment and configured parameters. Therefore, we apply the hyper-
heuristic SAW to gradually update the weighting scheme in tandem with
Providentia, denoted as Providentia-SAW, to explore how and whether
overall SAS fitness may be improved over the course of system execution.

Providentia uses the online SAW method of optimization described in
the original SAW paper [34]. Step (3) in Figure 5 is augmented with the
SAW technique. Rather than randomly generating the weights, a require-
ments engineer can provide initial values (i.e., seed) for Providentia-SAW to

21

use in the first generation. The fitness sub-functions are evaluated every fifth
generation and the sub-function with the lowest fitness value (i.e., in compar-
ison to the other fitness sub-functions in the equation) has its corresponding
weight increased to guide the search process for an optimal combination of
weights. By increasing the weight of the least fit sub-function, the search
process ensures that the weighting scheme balances all concerns appropri-
ately to achieve the highest overall fitness value. The generation number
to evaluate the fitness sub-functions (i.e., five) was determined empirically.
Other numbers, both higher and lower, were simulated, however optimal re-
sults were obtained when evaluating every fifth generation. This generation
value balances the competing concerns of adapting too frequently, where the
search space does not have enough time to consider optimal solutions, and
adapting too infrequently, where more optimal solutions are never explored.

4. Experimental Results

This section describes the experimental setup and results for both the
RDM and the SVS case studies. The RDM is an industry-provided case
example and the SVS was created by the authors’ research lab. First, we in-
troduce the experiment setup parameters that we used and the types of adap-
tations performed for each application. Next, we present our results for each
application to compare the performance of randomly-generated, manually-
selected, and Providentia-derived FR/NFR weights. We then describe how
Providentia-SAW enabled further optimization towards the satisficement of
SAS requirements.

4.1. RDM Study

This section describes the experimental setup and results of the RDM
application.

4.1.1. RDM Experimental Setup

The RDM application is modeled as a completely-connected graph. Each
node of the graph represents an RDM. Each edge of the graph represents
a network link. For each trial, system and environmental parameters were
randomized based on a model previously presented by Keeton et al. [14, 15].
For example, the randomized system parameters include a random number
of RDMs (i.e., within [15,30]) and a random number of valid messages (i.e.,
[100,200]) inserted into RDMs at random timesteps. Each message is required

22

to be replicated to all other RDMs. The RDM simulation was performed
over 300 timesteps. In addition to the 23 FRs presented in Figure 1, we also
examine seven NFRs specific to the RDM that are next presented in Table 1.

NFR Set of FRs
NFR1: Maximize (A), (B), (C), (E), (F), (G), (H), (I), (L),

[Reliability] 0.4, 0.2, 0.2, 0.0, 0.0, 0.1, 0.0, 0.1, 0.0,

(M), (N), (R), (T), (U), (V), (W)

0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0

NFR2: Maximize (A), (C), (D), (E), (F), (G), (H), (L), (M),

[Throughput] 0.0, 0.6, 0.0, 0.0, 0.0, 0.1, 0.1, 0.0, 0.0,

(N), (O), (P), (Q), (R), (S), (T), (U), (V),

0.0, 0.0, 0.0, 0.0, 0.1, 0.0, 0.1, 0.0, 0.0,

(W)

0.0

NFR3: Maximize (C), (D), (H), (I), (K), (M), (Q), (S), (U),

[Speed] 0.2, 0.1, 0.3, 0.2, 0.0, 0.0, 0.0, 0.2, 0.0,

(V), (W)

0.0, 0.0

NFR4: Maximize (A), (B), (D), (G), (H), (L)

[System Security] 0.4, 0.2, 0.2, 0.1, 0.1, 0.0

NFR5: Maximize (C), (G), (H), (Q), (R), (S), (T), (W)

[Secure Communication] 0.5, 0.3, 0.1, 0.0, 0.0, 0.0, 0.0, 0.1

NFR6: Maximize (C), (D), (H), (R), (T)

[Message Security] 0.2, 0.2, 0.0, 0.3, 0.3

NFR7: Minimize (A), (B), (E), (I), (K), (M), (O), (P), (U),

[Power] 0.3, 0.0, 0.1, 0.1, 0.0, 0.0, 0.0, 0.0, 0.0,

(V), (W)

0.3, 0.2

Table 1: RDM NFRs with sets of FRs and manually-derived weights.

We compared and evaluated different combinations of FRs and their
supporting weights for every NFR. The seven NFRs were derived using
three different techniques: (1) FR weights generated by random search [35],
(2) manually-selected weights assigned by a requirements engineer, and (3)
Providentia-optimized weights. Note that although a requirements engi-
neer initially selects a subset of FRs for each NFR, all three techniques may
disable (but not add) one or more FRs by setting the corresponding weight
to 0.0, effectively allowing limited flexibility in the selection of FRs as well
as the weight. Table 1 shows the initial sets of FRs for each NFR chosen by
a requirements engineer with the manually-derived weights listed below.

23

For instance, NFR6 uses the utility functions from Goals (C), (D), (H),
(R), and (T) to calculate its own utility function in aggregate. Specifically,
Equation (7) demonstrates the utility function for NFR6:

util(NFR6) = αC ∗ util(goalC) + αD ∗ util(goalD)+

αH ∗ util(goalH) + αR ∗ util(goalR) + αT ∗ util(goalT)
(7)

Each specified NFR has a similar utility function to determine its utility
value at run time. Note that Providentia optimizes the α values on a per-
NFR basis (i.e., each set of FR weights is optimized by Providentia and
normalized to ensure they sum to 1.0 to ensure that the associated utility
function is also normalized). To support NFR feedback within the SAS deci-
sion loop [1], additional reconfiguration strategies were implemented for the
RDM, where the new reconfiguration strategies were defined based on the
requirements engineer’s knowledge of the system. For instance, reconfigura-
tion as a result of an NFR3 violation resulted in an internal search for a new
network overlay. Finally, we configured the genetic algorithm as shown in
Table 2.

Parameter Value

Population size: 20
Number of generations: 50
Crossover rate: 25%
Crossover type: Two-point
Mutation rate: 50%
Mutation type: Single-point
Selection: Tournament selection, k = 3

Stepwise adaptation of weights: Online, every 5th generation

Table 2: Configuration of Providentia genetic algorithm.

Each of the parameters in the genetic algorithm were determined empirically.
For example, population sizes of 10, 25, 50, etc. were run in the simulation
as well as other values for the remaining parameters. Table 2 shows the val-
ues where the genetic algorithm converged. Note that the population size
(i.e., the number of individuals) combined with the number of generations
results in the number of evaluations per experimental replicate. Using the
values presented in Table 2, each experimental replicate evaluates 1000 in-
dividuals. To ensure statistical significance of our results, we performed 50

24

experimental replicates, each of which was seeded differently. The p-value
was calculated using the Wilcoxon-Mann-Whitney u-test by comparing the
results of (1) manually-selected weights vs. randomly-generated weights,
(2) Providentia-optimized weights vs. randomly-generated weights, and (3)
Providentia-optimized weights vs. manually-selected weights. Manually se-
lected weights indicate a single set of weights chosen by engineers to best
represent the contribution of each FR to each NFR. The configurations for
the genetic algorithm shown in Table 2 produced the experimental results
used in evaluating Providentia and Providentia-SAW.

4.1.2. RDM Experimental Results

This section presents our results from investigating how NFRs impact an
SAS. Specifically, we examine how a set of FRs can contribute to the satisfac-
tion of NFRs that are then in turn incorporated into the SAS decision loop [1]
to support run-time reconfigurations. We compare and evaluate the impact of
applying automatically-selected Providentia FR weights with manual and
random selection, respectively. For this experiment, all FR weights associ-
ated with each NFR are normalized to 1.0. For manual weight selection, we
apply the weights as shown in Table 1, where weights of 0.0 indicate that the
related FR’s utility function is not applied to the calculation of its associated
NFR.

With respect to the fitness function in Equation (2), we set αNFR = 0.375,
αFR = 0.375, and αNA = 0.25, where these values were selected based on
empirical evidence.

For this experiment, we define two null hypotheses. First, H10 states that
“there is no difference in fitnesses achieved by a Providentia-optimized goal
model and those that are unoptimized.” Second, H20 states that “there is
no difference in fitnesses achieved by a Providentia-optimized goal model
and those manually optimized by a requirements engineer.”

Figure 7 shows three boxplots for each NFR in the RDM with aver-
age fitness values calculated from randomly-selected FR weights, manually-
selected FR weights, and Providentia-optimized FR weight selection. Fig-
ure 7 demonstrates that Providentia can significantly improve overall NFR
fitness than those manually selected by a requirements engineer or selected
at random (p < 0.05, Wilcoxon-Mann-Whitney u-test). Table 3 presents the
average utility values (µ) and standard deviation (σ) for each NFR, with the
optimal value highlighted in gray. These results suggest that Providentia

can improve overall NFR fitness when an SAS is subject to uncertainty.

25

Figure 7: NFR fitness experimental results [6].

Providentia also enabled a significant decrease in the number of encoun-
tered FR violations in comparison to randomly- and manually-defined FR
weights (p < 0.05, Wilcoxon-Mann-Whitney u-test), as shown in Figure 8.
As requirements violations tend to signify a significant problem with a sys-
tem, a reduction in run-time violations is an ideal result for an optimization
procedure.

Given the results presented in Figure 7, Table 3, and Figure 8, we can re-
ject bothH10 andH20 and accept our alternate hypotheses that Providentia
provides a significant improvement over manual and random search.

We next describe the integration of SAW within Providentia to provide
further points of optimization.

4.1.3. RDM Results with SAW Integration

We now examine how the fitness function weights (αNFR, αFR, and αNA;
c.f., Equation (2)) impact overall fitness, as the weights were initially selected

26

NFR Random Manual Providentia
NFR1: Maximize µ: 0.654 µ: 0.615 µ: 0.905
[Reliability] σ: 0.325 σ: 0.191 σ: 0.149
NFR2: Maximize µ: 0.655 µ: 0.666 µ: 0.882
[Throughput] σ: 0.325 σ: 0.262 σ: 0.153
NFR3: Maximize µ: 0.875 µ: 0.743 µ: 0.975
[Speed] σ: 0.207 σ: 0.148 σ: 0.085
NFR4: Maximize µ: 0.802 µ: 0.736 µ: 0.979
[System Security] σ: 0.273 σ: 0.177 σ: 0.085
NFR5: Maximize µ: 0.621 µ: 0.742 µ: 0.925
[Secure Communication] σ: 0.273 σ: 0.191 σ: 0.146
NFR6: Maximize µ: 0.921 µ: 0.919 µ: 0.980
[Message Security] σ: 0.181 σ: 0.072 σ: 0.069
NFR7: Minimize µ: 0.821 µ: 0.758 µ: 0.926
[Power] σ: 0.270 σ: 0.172 σ: 0.188

Table 3: NFR average utility values and standard deviations [6].

Figure 8: FR violation experimental results [6].

27

based on empirical evidence and domain knowledge [6]. We apply SAW to
dynamically adjust the weights during execution (c.f., Section 3.3). For this
experiment, we executed Providentia with and without SAW applied. We
reuse the configuration of the genetic algorithm as presented in Table 2.
Moreover, SAW dynamically updates the weights of the fitness function every
fifth generation, where the poorest-performing fitness subfunction’s weight is
increased and the remaining subfunction weights are normalized to sum to
1.0.

We define an additional null hypotheses for this experiment. H30 states
that “there is no difference between a Providentia-optimized goal model
with static fitness subfunction weights and a goal model with dynamically-
optimized fitness subfunction weights.” For this experiment, we reuse the
static weights defined in the previous section (i.e., αNFR = 0.375, αFR =
0.375, and αNA = 0.25) as both our static weights and seed weights for
Providentia-SAW.

Figure 9 presents two boxplots that show the fitness values obtained from
goal models optimized with Providentia and Providentia-SAW, respec-
tively. As this figure demonstrates, applying SAW to Providentia results
in higher fitness values (p < 0.05, Wilcoxon-Mann-Whitney u-test), suggest-
ing that weights that are dynamically adjusted better reflect the environment
and/or configuration of the system. Moreover, these results enable us to re-
ject H30 and conclude that the fitness function weighting scheme directly
impacts overall fitness resulting from monitoring the system.

Next, Figure 10 presents a set of grouped boxplots that demonstrate
the average utility value (calculated by the aggregate utility values of each
associated FR) for each NFR. As can be seen by this figure, there is no
statistical difference that exists between the average utility values of each
NFR that were optimized by Providentia and Providentia-SAW, respec-
tively (p > 0.05, Wilcoxon-Mann-Whitney u-test). This result is interesting
in that overall FR fitness was significantly improved (c.f., Figure 9), however
there is no improvement for the NFR values. This result suggests that the
NFR utility values may be independent of the overall RDM fitness calcula-
tion, however reconfigurations that are performed at a coarser-grain (NFRs)
can significantly impact and improve the performance of FR utility functions.

Figure 11 shows the average number of non-invariant and invariant re-
quirement violations that occurred during execution, respectively. Again,
there is no significant difference (p > 0.05, Wilcoxon-Mann-Whitney u-test)
in the number of violations between Providentia and Providentia-SAW,

28

Figure 9: Comparison of fitness values between Providentia and Providentia-SAW ex-
periments for the RDM application.

suggesting that adjusting the fitness function weights does not significantly
impact the SAS reconfiguration engine for the RDM application.

Lastly, Figure 12 provides a comparison of the starting and ending fit-
ness sub-function weights attained with Providentia-SAW. As can be seen
from this figure, αFR is maximized and αNFR and αNA tend to be mini-
mized, thereby suggesting that the satisficement of FRs is considerably more
important to the performance of the RDM application. This result corre-
lates with those found in Figures 10 and 11 in that SAW seems to have a
minimal impact on NFR satisficement and violation reduction. However, an
improvement in overall performance of the RDM application still presents a
significant finding.

We next repeat our experiments on the SVS application to demonstrate
the domain independence of Providentia and Providentia-SAW.

4.1.4. SVS Experimental Setup

The SVS (c.f., Section 2.2.2) comprises an autonomous vacuum system
tasked with cleaning a desired space safely. As such, the SVS must balance
competing concerns to satisfy its requirements, including maximizing clean-

29

Figure 10: Comparison of NFR fitness values between Providentia and Providentia-SAW

experiments for the RDM application.

ing efficiency, minimizing needless power consumption, and ensuring the safe
operation of the vacuum.

For this experiment, the SVS was simulated in the Open Dynamics En-
gine,5 where its physical appearance (c.f., Figure 13) and behaviors were
modeled on observations from the iRobot Roomba vacuum system. The
SVS comprises two wheels, a circular body, seven touch sensors for collision
detection, two wheel velocity sensors to monitor the status of each individual
wheel speed, and a vacuum sensor that monitors the suction capabilities of
the robot.

To motivate the need for run-time adaptation, uncertainty was configured
in terms of system and environment-based uncertainty. System uncertainty
comprised random sensor noise, sensor failures induced at random during
execution, and fluctuations in the main controller timing logic (e.g., varia-
tions in the amount of time to spend in a particular path plan) to represent
concerns that are found in real-time operating systems. Environment uncer-

5See http://www.ode.org/.

30

Figure 11: Comparison of requirement violations between Providentia and
Providentia-SAW experiments for the RDM application.

Figure 12: Comparison of starting/ending fitness subfunction weights for the RDM appli-
cation with and without SAW optimization.

31

Figure 13: Screenshot of SVS simulation environment in the Open Dynamics Engine.

tainty includes the amount and distribution of dirt spread throughout the
room, a downward step to avoid, and randomly-placed objects that may ei-
ther hurt the SVS (e.g., a pole or liquid spill) or the object itself (e.g., a pet
or child) that introduce safety concerns.

The SVS will reconfigure to minimize the impacts of uncertainty, thereby
maximizing overall requirements satisficement. As with the RDM, the SVS
performs run-time requirements monitoring via utility functions to quan-
tify the performance of each separate requirement, where violations and/or
unsatisfactory performance result in a reconfiguration. Possible reconfigura-
tions include changing the current path plan (e.g., from a spiral to random
search), updating the power moding strategy (e.g., from full power to re-
duced power), and instantiating emergency avoidance procedures to bypass
a critical object.

For the SVS, we specify three NFRs to guide the system. Table 4 specifies
the defined NFRs for the SVS, along with the sets of FRs and respective
weights that comprise its aggregate utility function. Note that unlike the
RDM application, Providentia is not provided FRs with weights of 0.0 to
demonstrate its effectiveness in a smaller search space (i.e., fewer FRs) for
each NFR.

32

NFR Set of FRs
NFR1: Minimize [Cost] (D), (F), (J), (R), (S)

0.15, 0.3, 0.15, 0.2, 0.2

NFR2: Minimize [Time] (A), (B), (C), (E), (G)

0.3, 0.2, 0.2, 0.15, 0.15

NFR3: Maximize [Performance] (A), (B), (C), (D)

0.3, 0.25, 0.25, 0.2

Table 4: SVS NFRs with sets of FRs and manually-derived weights.

4.1.5. SVS Experimental Results

For this experiment, we reuse the experimental setup for the RDM (c.f.,
Section 4.1.1). Specifically, we examine how Providentia-optimized FR
weighting schemes compare with weighting schemes that were manually- and
randomly-specified (note that, for presentation purposes, we condense our
results section to include SAW as well as the replication of the Providentia

experiment in the SVS application domain). As the fitness function intro-
duced in Equation (2) was specific to the RDM application, we now extend
the fitness function to be specific to the SVS. The fitness function for the
SVS is shown in Equation (8):

FF =

αNFR ∗ FFNFR + αFR ∗ FFFR+

αadaptations ∗ FFadaptations iff invariants true

0.0 otherwise

(8)

First, we combine these fitness subfunctions with those fitness subfunc-
tions specific to Providentia, as previously defined in Equations (3) and (5).
As with the RDM, we set αNFR = 0.375, αFR = 0.375, and αadaptations = 0.25.
We substitute Equation (6) that is specific to the RDM with Equation (9),
specific to the SVS, to minimize the number of adaptations that the SVS
experiences at run time:

FFadaptations =
1.0

|adaptations|
(9)

Figure 14 presents boxplots that show the fitness values between goal
models that were optimized with Providentia-SAW and Providentia, those
whose FR weights were manually-selected (Manual), and those whose weights
were randomly selected (Random). As can be seen from the plots, optimizing

33

with Providentia significantly improves overall fitness of the SVS (p < 0.05,
Wilcoxon-Mann-Whitney u-test). Moreover, introducing SAW to optimize the
fitness sub-functions that guide Providentia (c.f., Equation (8), αNFR, αFR,
αadaptations) further significantly improves fitness (p < 0.05, Wilcoxon-Mann-
Whitney u-test).

Figure 14: Comparison of fitness values between all run types for the SVS application.

Similar to the results presented for the RDM application, Figure 15
demonstrates how the SVS attains significant NFR fitness improvements as
Providentia and then Providentia-SAW are applied (p < 0.05, Wilcoxon-
Mann-Whitney u-test).

Table 5 and Figure 16 demonstrate that although Providentia-SAW pro-
vides higher fitness than Providentia, the number of invariant and non-
invariant violations are not significantly increased, therefore suggesting a
positive impact to the Providentia technique with minimal negative reper-
cussions.

34

Figure 15: Comparison of NFR fitness values between Providentia and Providentia-SAW
experiments for the SVS application.

Providentia SAW
Invariant µ: 3.592 µ: 3.418
violations σ: 25.042 σ: 25.292
Noninvariant µ: 732.765 µ: 748.941
violations σ: 36.174 σ: 45.178

Table 5: Invariant and noninvariant average violations and standard deviations for SVS
application.

Table 6 presents the average utility values (µ) and standard deviation
(σ) for each of the SVS NFRs. As with the RDM, we see a significant
improvement in average utility for most NFRs (p < 0.05, Wilcoxon-Mann-
Whitney u-test), further suggesting that Providentia and Providentia-SAW

significantly improve system performance while experiencing uncertainty.

35

Figure 16: Comparison of violations between Providentia and Providentia-SAW experi-
ments for the SVS application.

NFR Random Manual Providentia SAW
NFR1: Minimize µ: 0.972 µ: 0.948 µ: 0.957 µ: 0.951
[Cost] σ: 0.114 σ: 0.099 σ: 0.200 σ: 0.210
NFR2: Minimize µ: 0.564 µ: 0.510 µ: 0.833 µ: 0.773
[Time] σ: 0.363 σ: 0.014 σ: 0.302 σ: 0.342
NFR3: Maximize µ: 0.489 µ: 0.426 µ: 0.875 µ: 0.886
[Performance] σ: 0.399 σ: 0.072 σ: 0.281 σ: 0.279

Table 6: NFR average utility values and standard deviations for SVS application.

5. Discussion

This paper has described search-based techniques and their corresponding
empirical studies that use quantitative NFR performance information in the
SAS feedback loop to support online decision making. To enable this calcula-
tion, a set of FRs (either new or existing) are identified from a requirements

36

specification to support quantification of an NFR, where each selected FR is
assigned a weight to indicate its relative importance in the satisfaction of the
NFR’s objectives. Providentia was introduced to perform automated op-
timization of the FR selection and weight definition process, given the large
search space that results from this problem. Furthermore, SAW was added to
Providentia to further optimize the weights of the fitness subfunctions that
guided the search procedure.

Providentia and Providentia-SAW determine optimal sets of weights to
make the system more robust to uncertainty. For example, the uncertainty
introduced in the RDM simulation include the percentage of dropped/delayed
messages, the percent chance that a server goes down, of a network link
severing, sensor fuzz, and more. Uncertainty introduced in the SVS include
a randomized chance of each sensor failing and/or fuzzing, the distribution
of dirt particles in the room, a downward step in the room, the random
instantiation of hazardous objects to the SVS (e.g., liquid, large objects,
etc.), and more. The different types of uncertainty faced by the two case
studies show the effectiveness and domain independence of Providentia

and Providentia-SAW, as the RDM is from an industrial collaborator and
the SVS is based on a real-world system.

Experimental results suggest that the introduction of NFRs into the SAS
feedback ecosystem, along with Providentia’s automated optimization pro-
cedure to determine the configuration of each NFR, can produce an SAS
that performs better in terms of overall fitness while significantly reducing
the number of requirements violations incurred during execution. These re-
sults demonstrate that non-functional objectives, while historically difficult
to quantify, can be automatically reconfigured and tuned to enable an SAS
to deliver optimal performance in the face of uncertainty.

Figure 14 shows the comparison of fitness values (i.e., the values calcu-
lated in Equation (8)) for each of the four runs. With the manually-specified
weights for the fitness function, Providentia performs the best because the
GA is able to explore the weights for NFRs that are separate from the weights
of the fitness function. For manual, random, and Providentia, the alpha
values in Equation (8) are all equal. Providentia-SAW combines the results
from Providentia (leading to a higher median fitness), but the search space
for an optimal fitness value is explored as the overall fitness function is ad-
justed every fifth generation. Providentia-SAW has led to a greater degree
of variance yet further improved the results from standalone Providentia

(i.e., without SAW integration).

37

Additional results demonstrated the significance of adjusting the weights
of the fitness subfunctions that guide Providentia’s search procedure. While
there was no significant impact to the satisficement of NFR utility values,
FR utility values were significantly improved when using Providentia-SAW,
thereby leading to a significant improvement in overall fitness of both SAS
applications that were studied. This result suggests that, as was previously
discovered [36], a linear-weighted fitness function is subject to the uncer-
tainties imposed by each individual environment and that the statistically-
specified weights may not generate optimal solutions for all environments
considered. As a result, running a hyper-heuristic optimizer can significantly
improve fitness in uncertain environments.

In cyber-physical systems, modeling real-world uncertainty is an ongo-
ing problem as simulations often cannot include unexpected issues that in
reality a system may face. Such a system would benefit from Providentia-
optimized NFRs as well as Providentia-SAW to balance NFR/FR/adaptation
utility functions in unforeseen circumstances.

5.1. Threats to validity.

This paper has presented an extended proof of concept to demonstrate
that quantifying NFRs at run time can support the reconfiguration engine
in an SAS to improve overall requirements satisficement and minimize viola-
tions. As such, we have identified the following internal and external threats
to validity for this research.
Internal. First, the derivation of the requirements for both the RDM and
SVS applications was manually performed and may not be wholly inclusive
of all possible requirements. Moreover, each application was simulated based
on the executable specifications and may not exhaustively capture all of the
detailed requirements. The manual selection of each FR set to support an
NFR is another threat, as the selection may either be too limited or broad as
it relies on domain knowledge, which is a common problem in general when
identifying NFRs [7, 37].
External. External threats include impacts to the system as a result of
unanticipated environmental conditions, unexpected human interaction with
systems under execution, and unplanned for changes to the system require-
ments, thereby invalidating prior optimizations discovered by Providentia

and Providentia-SAW.
Construct. Construct threats include scalability and generalizability con-
cerns. In terms of scalability, optimization heuristics traditionally suffer from

38

a larger search space. For this paper, the size of the requirements specifi-
cations for both the RDM and SVS case studies may be considered small
(i.e., 23 FRs and 7 NFRs for the RDM, and 19 FRs and 3 NFRs for the
SVS), and as such, the results may not necessarily generalize to larger search
spaces. In terms of generalizability, we have demonstrated Providentia and
Providentia-SAW in two application domains: a networking application and
a cyber-physical system, both of which are modeled as SASs. As such, it is
possible that our techniques do not generalize to non-SAS domains and can
be considered as future work for the authors.

We also only explored the genetic algorithm as a search heuristic. As such,
other applicable search techniques, such as multi-objective optimization [38],
could be used to discover ideal or more globally-optimal solutions. Therefore,
an additional threat to validity lies in the search technique, and we plan to
explore other such search heuristics in future work.

We next describe related work that span a number of complementary
areas to further highlight our contributions.

6. Related Work

This section presents related work with regard to self-adaptive systems,
obstacle mitigation and requirement satisficement, goal modeling, and NFRs.

Self-Adaptive Systems. Self-adaptive capabilities are generally expen-
sive to build, difficult to modify, and are usually specific to a given application
[27]. The Rainbow framework generalizes an SAS such that it can be reused
in different systems, separating the self-adaptive control infrastructure from
the system itself [27]. This separation enables use in legacy systems, local-
ization of problems in separate modules, and software reuse. Rainbow is an
architecture-based modeling technique while Providentia extends GORE
at a higher level. Cheng et al. also presented the use of utility functions
in SASs with quality NFRs such as performance, cost, and content fidelity
[39]. Rather than introducing new metrics to measure quality attributes
in a separate architecture, Providentia extends the preexisting goal model
of FRs and uses metrics already defined by the system to measure NFRs.
The use of predefined metrics saves both time and space when performing
reconfigurations at run time.

Aceituna et al. presented a model to determine if, based on a given
requirements model, an SAS can be put into undesired states [40]. Although
this model can be useful in evaluating FRs, Providentia operates under the

39

assumption that the FRs keep the system in an acceptable state. Moreover,
Providentia focuses on guiding the SAS behavior based on FRs. Should
the NFRs introduced with Providentia fail, the system will remain in a
functionally-valid, yet less optimal, state.

Bencomo et al. use a Bayesian definition of surprise to measure the
degrees of uncertainty that cause a self-adaptive system to deviate from ex-
pected behavior [41]. Their approach uses dynamic decision networks that
use probability to determine the satisficement of an NFR based on a sys-
tem’s decision. Initial probabilities are either estimated or derived based on
past statistical performance. Providentia uses utility functions to deter-
mine requirement/goal satisficement and violations, rather than probability,
to measure uncertainty.

A recent direction for SASs involves Complex Event Processing (CEP)
systems [42]. A CEP system analyzes event streams and detects specific
events or patterns. Weisenburger et al. address the difficulties in making
CEP systems self-adaptive and the need to identify conditions that trigger
adaptations [42]. CEP systems can directly benefit from Providentia as
CEP systems typically do not allow developers to specify metrics on quality
attributes. Providentia provides quantifications on ambiguous goals and
requirements that can be optimized in SASs and therefore can be used to
evaluate CEP systems to determine the specific conditions that require an
adaptation.

In addition to the numerous approaches for representing NFRs in goal
models and SASs, Aspect-Oriented Requirements Engineering presents an
approach to identify and specify cross-cutting concerns in separate modules,
or aspects [43]. Yu et al. demonstrate that aspects can be identified in
goal-oriented requirement analysis using both FRs and NFRs [44]. Similar
to Providentia, Gray et al. elevate cross-cutting concerns to be represented
with FRs in a goal model, in contrast to Providentia that includes NFRs
[45]. As shown in the performance NFR of the RDM case study, cross-cutting
concerns are prevalent in generic NFRs. DeVries and Cheng use evolutionary
computation to automatically detect unwanted feature interactions [46], in
contrast to Providentia and Providentia-SAW that introduce additional
feature interactions by adding new non-functional requirements to a goal
model. Bisbal and Cheng also explore unwanted feature interactions due to
non-functional conflicts due to shared resources [47]. Note that Providentia
and Providentia-SAW do not add unwanted feature interactions but rather
evaluate the feature interactions between FRs with NFRs.

40

Obstacles and Requirements. Obstacle mitigation is a strategy for
identifying and resolving obstacles to goal satisfaction. van Lamsweerde et al.
[4, 48] have described a set of strategies for obstacle mitigation, however this
approach does not specify to what degree of non-satisfaction that NFRs can
become without impacting or degrading the overall system. Providentia

can be used to supplement these strategies by extending the non-functional
goal model in KAOS, and moreover, automatically optimize the FR/NFR
weighting scheme.

Requirements monitoring is an approach for quantifying requirements at
run time for use in detecting and mitigating obstacles as the system executes,
including a monitoring framework developed by Feather et al. [49]. Sawyer
et al. [50] have posited that requirements can be promoted to live run-time
entities for use in self-adaptation feedback loops, with a notable example
being the SAS MAPE-K feedback loop [1]. However, these approaches mainly
focus on FRs. Providentia-optimized NFRs are also intended to be used in
adaptation decisions at run time, supported by a set of well-defined FRs and
their accompanying utility functions.

Goal Modeling. Many approaches similar to Providentia use goal
modeling to address dependencies between FRs [51] or represent NFRs as
soft goals [7, 52]. Other approaches use probabilistic methods to improve
NFR/FR satisficement [53, 54] or optimize SAS satisficement [55, 56]. How-
ever, Providentia focuses solely on NFR/FR dependencies to optimize FR
and NFR satisficement in an SAS without prior knowledge of system perfor-
mance that most probabilistic methods require. Furthermore, Providentia
does not use early-phase requirements engineering or high-level abstraction
[57, 37], but rather focuses on a run-time model used by an SAS.

Non-Functional Requirements. Other techniques have been intro-
duced to quantify NFRs, generally representing NFRs as soft goals [5, 58, 59].
Although both the RDM and SVS case studies use the KAOS goal model-
ing framework, Providentia is independent of any framework (e.g., NFR
Framework, iStar, and KAOS). In contrast to modeling NFRs as soft goals,
the weighted approach enables greater flexibility for an SAS to use in finding
an optimal reconfiguration strategy at run time. Salehie et al. use a Goal-
Action-Attribute Model (GAAM) and an automated weighting scheme called
Analytic Hierarchy Process to prioritize NFRs [8]. However, priorities may
shift due to uncertainty and requirement interactions at run time. Therefore,
Providentia uses a genetic algorithm to optimize goal and weight selection
instead of prioritization to make the goal model more robust to uncertainty

41

at run time. Contributing work has decomposed NFR behaviors into mon-
itored patterns rather than explicit requirements in a goal model [60] and
used quantifiable metrics to represent NFRs separately from the FR goal
model [61]. Providentia monitors requirements at run time and does not
separate NFRs from the goal model of FRs, as separating NFRs and FRs
may prevent the requirements engineer to identify cross-cutting concerns in
NFRs.

7. Conclusion

This paper described Providentia, a design-time approach to automat-
ically quantify NFRs at run time. Providentia uses a genetic algorithm to
determine an optimal weighting scheme of FRs to describe each NFR, where
optimal results yield the highest overall fitness. To illustrate the effective-
ness of Providentia, we used an industry-provided RDM application that
distributes messages across a network while experiencing random sources of
uncertainty. We extended previous work [6] to use a second case study to
evaluate the effectiveness of the technique in a different domain.

To further improve Providentia, we incorporated SAW to optimize the
weighting scheme of the fitness subfunctions for both case studies. Exper-
imental results suggest that the Providentia-optimized systems are more
robust against system and environmental uncertainty and fulfills its require-
ments to a higher degree when compared to the systems without Providentia.

Future directions for this research include extending the Providentia

search procedure to execute at run time, applying both techniques to a real-
world cyber-physical system, and evaluating other search techniques that
may better handle competing concerns in fitness calculation than a linear-
weighted sum (e.g., multi-objective optimization). We also intend to work
towards open-sourcing the RDM and SVS applications, respectively.

Acknowledgements

This work has been supported in part by grants from the NSF (CNS-
1657061, CNS-1305358, and DBI-0939454), the Michigan Space Grant Con-
sortium, the Comcast Innovation Fund, Oakland University, Ford Motor
Company, General Motors Research, the Air Force Research Laboratory
(AFRL) under agreement numbers FA8750-16-2-0284 and FA-8750-19-2-0002,

42

and Michigan State University. The U.S. Government is authorized to re-
produce and distribute reprints for Governmental purposes notwithstanding
any copyright notation thereon. The views and conclusions contained herein
are those of the authors and do not necessarily represent the opinions of the
sponsors.

43

References

[1] J. Kephart, D. Chess, The vision of autonomic computing, Computer
36 (2003) 41 – 50.

[2] P. McKinley, S. Sadjadi, E. Kasten, B. H. C. Cheng, Composing adap-
tive software, Computer 37 (2004) 56 – 64.

[3] L. Chung, B. Nixon, E. Yu, J. Mylopoulos, Non-functional requirements,
Software Engineering (2000).

[4] A. van Lamsweerde, Requirements Engineering: From System Goals to
UML Models to Software Specifications, Wiley, 2009.

[5] A. Yrjönen, J. Merilinna, Extending the nfr framework with measurable
nonfunctional requirements, in: NFPinDSML@ MoDELS.

[6] K. M. Bowers, E. M. Fredericks, B. H. Cheng, Automated optimization
of weighted non-functional objectives in self-adaptive systems, in: In-
ternational Symposium on Search Based Software Engineering (SSBSE
2017), Springer, pp. 182–197.

[7] E. S. K. Yu, Towards modelling and reasoning support for early-phase
requirements engineering, in: Proceedings of the Third IEEE Interna-
tional Symposium on Requirements Engineering, pp. 226–235.

[8] M. Salehie, L. Tahvildari, Towards a goal-driven approach to action
selection in self-adaptive software, Software: Practice and Experience
42 (2012) 211–233.

[9] E. Burke, G. Kendall, J. Newall, E. Hart, P. Ross, S. Schulenburg,
Hyper-heuristics: An emerging direction in modern search technology,
in: F. Glover, G. A. Kochenberger (Eds.), Handbook of Metaheuristics,
volume 57, Springer US, 2003, pp. 457–474.

[10] J. H. Holland, Adaptation in Natural and Artificial Systems, MIT Press,
Cambridge, MA, USA, 1992.

[11] B. Craenen, A. E. Eiben, Stepwise adaption of weights with refinement
and decay on constraint satisfaction problems, in: Proceedings of the 3rd
Annual Conference on Genetic and Evolutionary Computation, Morgan
Kaufmann Publishers Inc., pp. 291–298.

44

[12] A. E. Eiben, J. K. van der Hauw, Solving 3-sat by gas adapting con-
straint weights, in: Proceedings of 1997 IEEE International Conference
on Evolutionary Computation (ICEC’97), IEEE, pp. 81–86.

[13] A. E. Eiben, J. K. van der Hauw, Adaptive penalties for evolutionary
graph coloring, in: Artifical Evolution, Springer, pp. 95–106.

[14] M. Ji, A. Veitch, J. Wilkes, Seneca: Remote mirroring done write,
in: USENIX 2003 Annual Technical Conference, USENIX Association,
Berkeley, CA, USA, 2003, pp. 253–268.

[15] K. Keeton, C. Santos, D. Beyer, J. Chase, J. Wilkes, Designing for
disasters, in: Proceedings of the 3rd USENIX Conference on File and
Storage Technologies, USENIX Association, Berkeley, CA, USA, 2004,
pp. 59–62.

[16] N. Bencomo, J. Whittle, P. Sawyer, A. Finkelstein, E. Letier, Require-
ments reflection: Requirements as runtime entities, in: Proc. of the 32nd
ACM/IEEE International Conference on Software Engineering, ACM,
Cape Town, South Africa, 2010, pp. 199–202.

[17] N. Bencomo, A. Belaggoun, Supporting decision-making for self-
adaptive systems: from goal models to dynamic decision networks, in:
Requirements Engineering: Foundation for Software Quality, Springer,
2013, pp. 221–236.

[18] B. H. C. Cheng, P. Sawyer, N. Bencomo, J. Whittle, A goal-based mod-
eling approach to develop requirements of an adaptive system with en-
vironmental uncertainty, in: Proc. of the 12th International Conference
on Model Driven Engineering Languages and Systems, Springer-Verlag,
Berlin, Heidelberg, 2009, pp. 468–483.

[19] J. Whittle, P. Sawyer, N. Bencomo, B. H. C. Cheng, J. Bruel, Re-
lax: Incorporating uncertainty into the specification of self-adaptive
systems, in: 17th IEEE International Requirements Engineering Con-
ference (RE’09), pp. 79–88.

[20] P. Oreizy, M. Gorlick, R. Taylor, D. Heimhigner, G. Johnson, N. Med-
vidovic, A. Quilici, D. Rosenblum, A. Wolf, An architecture-based ap-
proach to self-adaptive software, Intelligent Systems and their Applica-
tions, IEEE 14 (1999) 54 –62.

45

[21] S. Neema, T. Bapty, J. Scott, Development environment for dynamically
reconfigurable embedded systems, in: Proceedings of the International
Conference on Signal Processing Applications and Technology. Orlando,
FL.

[22] Y. Li, J. Chen, L. Feng, Dealing with uncertainty: A survey of theories
and practices, IEEE Transactions on Knowledge and Data Engineering
25 (2013) 2463–2482.

[23] C. Chua Chow, R. K. Sarin, Known, unknown, and unknowable uncer-
tainties, Theory and Decision 52 (2002) 127—138.

[24] N. Esfahani, E. Kouroshfar, S. Malek, Taming uncertainty in self-
adaptive software, in: Proceedings. of the 19th ACM SIGSOFT sym-
posium and the 13th European conference on Foundations of software
engineering, ACM, 2011, pp. 234–244.

[25] D. O. Keck, P. J. Kuehn, The feature and service interaction problem in
telecommunications systems: A survey, IEEE Transactions on Software
Engineering 24 (1998) 779–796.

[26] A. Ramirez, B. Cheng, Automatically deriving utility functions for mon-
itoring software requirements, in: Proceedings of the 2011 International
Conference on Model Driven Engineering Languages and Systems Con-
ference, Wellington, New Zealand, pp. 501–516.

[27] D. Garlan, S.-W. Cheng, A.-C. Huang, B. Schmerl, P. Steenkiste, Rain-
bow: Architecture-based self-adaptation with reusable infrastructure,
Computer 37 (2004) 46–54.

[28] A. J. Ramirez, D. B. Knoester, B. H. C. Cheng, P. K. McKinley, Ap-
plying genetic algorithms to decision making in autonomic computing
systems, in: Proceedings of the 6th International Conference on Auto-
nomic Computing, pp. 97–106. (Best paper award).

[29] A. Dardenne, A. Van Lamsweerde, S. Fickas, Goal-directed requirements
acquisition, Science of computer programming 20 (1993) 3–50.

[30] L. Chung, B. A. Nixon, E. Yu, J. Mylopoulos, Non-functional require-
ments in software engineering, Springer Science & Business Media, 2012.

46

[31] P. deGrandis, G. Valetto, Elicitation and utilization of application-
level utility functions, in: Proc. of the 6th International Conference on
Autonomic Computing, ICAC ’09, ACM, 2009, pp. 107–116.

[32] W. Walsh, G. Tesauro, J. Kephart, R. Das, Utility functions in auto-
nomic systems, in: Proceedings of the First IEEE International Con-
ference on Autonomic Computing, IEEE Computer Society, 2004, pp.
70–77.

[33] A. C. Kumari, K. Srinivas, Software module clustering using a fast multi-
objective hyper-heuristic evolutionary algorithm, International Journal
of Applied Information Systems 5 (2013) 12–18.

[34] van der Hauw K, Evaluating and improving steady state evolutionary
algorithms on constraint satisfaction problems, Master’s thesis, Leiden
University, 1996.

[35] A. Arcuri, L. Briand, A practical guide for using statistical tests to
assess randomized algorithms in software engineering, in: Proceedings
of the 33rd International Conference on Software Engineering, ICSE ’11,
ACM, 2011, pp. 1–10.

[36] E. M. Fredericks, B. DeVries, B. H. C. Cheng, Autorelax: Automati-
cally relaxing a goal model to address uncertainty, Empirical Software
Engineering 19 (2014) 1466–1501.

[37] J. Mylopoulos, L. Chung, B. Nixon, Representing and using nonfunc-
tional requirements: A process-oriented approach, IEEE Transactions
on software engineering 18 (1992) 483–497.

[38] K. Deb, A. Pratap, S. Agarwal, T. Meyarivan, A fast and elitist multi-
objective genetic algorithm: Nsga-ii, Evolutionary Computation, IEEE
Transactions on 6 (2002) 182 –197.

[39] S.-W. Cheng, D. Garlan, B. Schmerl, Evaluating the effectiveness of
the rainbow self-adaptive system, in: ICSE Workshop on Software En-
gineering for Adaptive and Self-Managing Systems, 2009. SEAMS ’09.,
pp. 132–141.

47

[40] D. Aceituna, H. Do, Exposing the susceptibility of off-nominal behaviors
in reactive system requirements, in: 2015 IEEE International Conference
on Requirements Engineering (RE), IEEE, pp. 136–145.

[41] N. Bencomo, A. Belaggoun, A world full of surprises: Bayesian theory of
surprise to quantify degrees of uncertainty, in: Companion Proceedings
of the 36th International Conference on Software Engineering, ACM,
pp. 460–463.

[42] P. Weisenburger, M. Luthra, B. Koldehofe, G. Salvaneschi, Quality-
aware runtime adaptation in complex event processing, in: Proceedings
of the 12th International Symposium on Software Engineering for Adap-
tive and Self-Managing Systems, IEEE Press, pp. 140–151.

[43] A. Rashid, P. Sawyer, A. Moreira, J. Araújo, Early aspects: A model for
aspect-oriented requirements engineering, in: 2002 IEEE Joint Interna-
tional Conference on Requirements Engineering, IEEE, pp. 199–202.

[44] Y. Yu, J. C. Leite, J. Mylopoulos, From goals to aspects: discovering
aspects from requirements goal models, in: 2004 IEEE International
Requirements Engineering Conference, IEEE, pp. 38–47.

[45] J. Gray, T. Bapty, S. Neema, D. Schmidt, A. Gokhale, B. Natarajan, An
approach for supporting aspect-oriented domain modeling, in: Genera-
tive Programming and Component Engineering, Springer, pp. 151–168.

[46] B. DeVries, B. H. Cheng, Automatic detection of feature interactions
using symbolic analysis and evolutionary computation, in: 2018 IEEE
International Conference on Software Quality, Reliability and Security
(QRS), IEEE, pp. 257–268.

[47] J. Bisbal, B. H. Cheng, Resource-based approach to feature interac-
tion in adaptive software, in: Proceedings of the 1st ACM SIGSOFT
workshop on Self-managed systems, ACM, pp. 23–27.

[48] A. van Lamsweerde, E. Letier, Handling obstacles in goal-oriented re-
quirements engineering, IEEE Transactions on Software Engineering 26
(2000) 978–1005.

[49] M. Feather, S. Fickas, A. Van Lamsweerde, C. Ponsard, Reconciling
system requirements and runtime behavior, in: Proceedings of the Ninth

48

International Workshop on Software Specification and Design, 1998, pp.
50–59.

[50] P. Sawyer, N. Bencomo, J. Whittle, E. Letier, A. Finkelstein,
Requirements-aware systems: A research agenda for RE for self-adaptive
systems, in: Requirements Engineering Conference (RE), 2010 18th
IEEE International, pp. 95 –103.

[51] B. Nagel, C. Gerth, J. Post, G. Engels, Kaos4SOA-extending kaos mod-
els with temporal and logical dependencies., in: CAiSE Forum, pp.
9–16.

[52] P. Giorgini, J. Mylopoulos, R. Sebastiani, Goal-oriented requirements
analysis and reasoning in the tropos methodology, Engineering Appli-
cations of Artificial Intelligence 18 (2005) 159–171.

[53] A. Cailliau, A. van Lamsweerde, Runtime monitoring and resolution of
probabilistic obstacles to system goals, in: Proceedings of the 12th In-
ternational Symposium on Software Engineering for Adaptive and Self-
Managing Systems, IEEE Press, pp. 1–11.

[54] L. H. G. Paucar, N. Bencomo, The reassessment of preferences of
non-functional requirements for better informed decision-making in
self-adaptation, in: Requirements Engineering Conference Workshops
(REW), IEEE International, IEEE, pp. 32–38.

[55] E. Letier, A. van Lamsweerde, Reasoning about partial goal satisfaction
for requirements and design engineering, in: Proceedings of the 12th
ACM SIGSOFT Twelfth International Symposium on Foundations of
Software Engineering, pp. 53–62.

[56] Z. Yang, Z. Jin, Z. Li, Achieving adaptation for adaptive systems
via runtime verification: A model-driven approach, arXiv preprint
arXiv:1704.00869 (2017).

[57] F. Dalpiaz, A. Borgida, J. Horkoff, J. Mylopoulos, Runtime goal models:
Keynote, in: 2013 IEEE Seventh International Conference on Research
Challenges in Information Science (RCIS), IEEE, pp. 1–11.

49

[58] N. Kobayashi, S. Morisaki, N. Atsumi, S. Yamamoto, Quantitative non
functional requirements evaluation using softgoal weight., J. Internet
Serv. Inf. Secur. 6 (2016) 37–46.

[59] S. Yamamoto, An approach for evaluating softgoals using weight, in:
Information and Communication Technology, Springer, 2015, pp. 203–
212.

[60] S. Supakkul, T. Hill, L. Chung, T. T. Tun, J. C. S. do Prado Leite, An
nfr pattern approach to dealing with nfrs, in: Requirements Engineering
Conference (RE), 2010 18th IEEE International, IEEE, pp. 179–188.

[61] D. Sykes, W. Heaven, J. Magee, J. Kramer, Exploiting non-functional
preferences in architectural adaptation for self-managed systems, in:
Proceedings of the 2010 ACM Symposium on Applied Computing, ACM,
pp. 431–438.

50

