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Abstract—Verifying system behavior before deployment is a
necessity, especially with self-adaptive software. However, ex-
haustive verification is impractical due to both the scale of the
input/output space and uncertainties that may not be captured
in pre-deployment testing. Run-time monitors have been used
to measure operational health after deployment but are unlikely
to have a one-to-one correspondence with pre-deployment
testing. Problematically, adaptation strategies can be defined
for managing adverse run-time measurements due to run-
time monitors, however, it is infeasible to provide adaptation
triggers for untested behaviors with only static pre-deployment
tests. This paper introduces contextual metamorphic relations
that are applicable to specific contexts of a system’s behavior
and implementation artifacts. These contextual metamorphic
relations are a subset of general metamorphic relations and can
be used for both pre-deployment testing and post-deployment
run-time monitoring to trigger context specific adaptations in
order to improve tolerance to specific faults. We illustrate our
approach by triggering adaptation at run-time using contextual
metamorphic relations for two real-world inspired responsive
cyber-physical systems: a robotic drone system and a set of
proximity-enabled responsive systems.

Keywords–metamorphic relation; monitoring; adaptation;
self-adaptive; run-time; cyber-physical

1. INTRODUCTION

Verifying programs that include or deal with uncertainty
remains a difficult proposition [1]. Testing is still an activity
that typically occurs before deployment when the impacts
of uncertainty are largely unknown and enumeration of all
possible test cases is not possible [2]–[5] and is prohibitively
difficult to automatically define expected results [6] (i.e., the
oracle problem [7]). In this paper we propose a method of
detecting run-time system failures without statically defined
expected results. We detect these failures via metamorphic
relations [6] extended to be used as contextual run-time
monitors and adaptation triggers by exploiting relations in
system results over time rather than assessing results based
on a property measured at a single discrete time for known
expected results.
A fixed set of pre-deployment tests is insufficient to ensure
desired behavior at run-time, especially in the face of run-
time faults [8]. Existing work has used various search-based
methods to identify unique [9]–[11] or even adverse [12]
behaviors. However, pre-deployment techniques are inherently

limited to the implicit assumptions made when formulating
the search space and methods. Worse, unique behaviors may
not be adverse behaviors requiring manual analysis of the
set of behaviors found. While metamorphic relations alleviate
aspects of the oracle problem [13], they are typically applied to
a single function of the application for which the metamorphic
relation is valid. Run-time monitors can measure operational
health after deployment and trigger adaptation, but useful run-
time monitors may be difficult to create due to the oracle
problem.
A metamorphic relation measures the correctness of a result
when two different inputs to a function produce the same
output or two different inputs to a function produce a known
relation between the outputs (e.g., one output is less than
the other). However, metamorphic relations only apply to the
function the relation is based on and not the full set of system
behaviors. This paper introduces contextual metamorphic re-
lations that are evaluated only within the contexts the relation
is expected to hold. That is, the contextual metamorphic
relation only measures failure when the context (C) of the
metamorphic relation (MR) is applicable:

C =⇒ MR (1)

Contextual metamorphic relations alleviate aspects of the
oracle problem, can be applied to an entire system at run-
time, and can trigger context-specific adaptations due to their
run-time assessment.
The contributions of this paper are as follows:
• We introduce contextual metamorphic relations,
• We introduce how contextual metamorphic relations can

trigger adaptation, and
• We illustrate both contextual metamorphic relations and

context-specific adaptation on a real-world inspired robotic
drone system.

• We discuss the general applicability of contextual meta-
morphic relations via an additional example in proximity-
enabled response systems.

The remainder of this paper is organized as follows. Sec-
tion 2 and Section 3 provide an overview of the background
information and the approach with a running example, respec-
tively. Section 4 describes our results in several simulated
scenarios. We discuss the more general applicability of this
approach to a wider variety of problems in Section 5 by
discussing proximity-enabled response systems. Related work
is described in Section 6 while Section 7 discusses conclusions
and future work.



2. BACKGROUND

This section covers background in metamorphic relations,
our example robotic system, and a generic proximity-enabled
responsive system.

2.1 Metamorphic Relations

Unlike traditional pre-deployment tests that input data into
the software and compare the output with a predetermined
expected result, metamorphic testing utilizes relations between
two behaviors. When two distinct inputs yield identical results,
the metamorphic relation is deemed input-driven. Conversely,
when two distinct inputs produce different outcomes with
a recognized change (such as one result being greater than
the other), the metamorphic relation is categorized as output-
driven. While metamorphic relations were initially employed
for test generation [14], they have since been expanded as a
strategy for addressing the oracle problem [13].
Facilitated by metamorphic relations, metamorphic testing al-
lows for testing and test case generation without relying on an
oracle. Take, for instance, the classic example of an algorithm
designed to determine the shortest path between two points
in a graph [13] (denoted as A(G, s, e), where A represents
the algorithm, G is the graph, and s and e are the start
and end points, respectively). An input-based metamorphic
relation would assert that the function A consistently returns
the same value regardless of how the two points are ordered.
In other words, the metamorphic relation ensures that the
calculated distances (i.e., absolute values of the results) remain
unchanged even if the start (s) and end (e) points are swapped,
as shown in the following equation:

|A(G, s, e)| = |A(G, e, s)|. (2)

Equation 2 represents an input-based metamorphic relation
that we can use to verify the outputs for two distinct inputs
based on their expected relation (e.g., that their output is
equal). However, even when multiple sets of two points are
selected to generate another set of tests that can be verified
using the metamorphic relation, it does not guarantee that the
program is correct. It only guarantees that the metamorphic
relation was not violated for the inputs used in the test cases
defined and additional verification may necessitate additional
test cases.

2.2 Robotic Drone System

The robotic system used in this paper is a drone represented
as a single sphere, comprising an infrared sensor, light, and
a powered propeller extending from the top as shown in
Figure 1. The drone is inspired by an inexpensive toy drone
used by the child of one of the authors. Issues of unintended
behavior based on uncertainty have been experienced by both
the child and one of the authors and are explored in more
depth in Section 4.
The infrared sensor and light both are placed at the bottom of
the drone, facing downward. The drone creates infrared light
via its light source to be used as a distance measure/object
detection strategy. The infrared sensor detects light reflected

Figure 1. Infrared Ball Drone

from surfaces within range. When infrared light is read by the
sensor the drone increases throttle to prevent collision with
the object below it. When infrared light is not read, the drone
reduces its throttle to descend towards an object below it (e.g.,
the floor). This robotic system is similar to existing real-world
commercial systems used as toys by a variety of manufactures.
While only vertical positioning can be affected, the drone can
be “chased” upward by moving an object or hand underneath
it and “caught” as it continues downward to increase its
vertical position. The lateral position is entirely dependent
on random perturbations that cause a swing of the ball or
environmental factors (e.g., wind). Problematically, environ-
mental uncertainty and uncertainty of the physical robot itself
is known to cause issues. The authors have had personal
experience with an out of control drone that would not return
to the ground under its own control. For example, the drone
would simply fly away in outdoor environments.
Although a simple controller would be advantageous (e.g., a
PID controller [15]) for both ascent and descent, proportional
feedback of the error is only available within the range of
the reflected infrared. That is, only ascent can be based on a
proportional error of the reflected infrared. When outside of
the reflected infrared range the drone must descend without
external information on position until within the reflected
infrared range.

2.3 Proximity-Enabled Responsive System
The general proximity-enabled responsive system used in this
paper is represented in Figure 2. Starting in the left-most state
(i.e., “Wait”) the system waits until a time passes a specific
constant (cwait) until attempting to sense the proximity of a
nearby object in the “Sense” state. If no proximity is sensed,
the system returns to the wait. If proximity is sensed, the
system will react in the “React” state by performing its
operation until a constant time (creact) has passed. The system
continues this cycle indefinitely. Once the system reacts, it
returns to the “Wait” state for a constant time (cwait) before
re-sensing for proximity.
Many systems follow this pattern. For example, automatic
doors sense proximity and open for a specific amount of time
and then close until proximity is sensed. Hands-free faucets
in public restrooms detect the proximity of hands and run



Figure 2. State Diagram of Proximity-Enabled Responsive System

the water for a specific time and then re-sense for proximity.
Motion-activated lights sense proximity via motion and turn
on for a constant time. In each case, there is a waiting period
before proximity can be re-detected. This period is typically
short for motion-activated lights, but sufficient enough for the
lights to noticeably turn off and back on. Automatic doors,
similarly, will start to close and re-open before closing entirely
if proximity is detected. Hands-free faucets often include
the longest delay of the three resulting in a noticeable wait
between water resumes flowing from the faucet after stopping.

3. APPROACH AND RUNNING EXAMPLE

This section details the steps that comprise our approach along
with a running example. First, the system designer manually
identifies metamorphic relations. Once applicable metamor-
phic relations are defined, the context in which the meta-
morphic relations is applied to create contextual metamorphic
relations in the second step. While contextual metamorphic
relations could be used for testing pre-deployment, our third
step is to define contextual adaptations for detection of run-
time failures. In our fourth step we implement our adapta-
tions using a MAPE-K loop [16] via monitoring, analyzing,
planning and executing based on a set of knowledge. Each
step, along with a running example based on the robotic drone
system defined in the background (Section 2) is detailed below.
Finally, limitations are discussed.

3.1 Step (1): Identify MRs

In general, identifying metamorphic relations is a domain-
dependent activity [13]. For domain experts identifying re-
lations is not difficult and are most typically identified in an
“ad hoc and arbitrary way” [13]. Automatically identified rela-
tions [17], [18], however, are more challenging and considered
an open research problem [13]. An additional complication for
contextual metamorphic relations that are used at run time is
that it is not possible to choose any inputs for the relation.
Instead, the outputs to be compared via the relation must be
created based on run-time values during execution. That is,
the inputs must occur naturally during execution.
In the case of our running example based on the robotic drone
system described in the background (Section 2), there are two
distinct modes: increased thrust for ascent and decreased thrust
for descent. While ascent may increase and decrease thrust
based on reflected infrared (LM ), the normal behavior in this

mode is to ascend. Two metamorphic relations, one for each
mode, are:
• Ascent Mode: The reflected infrared should decrease

(∆LM ≤ 0.0), due to ascent, or slow its increase
(∆∆LM ≤ 0.0) measured as a change in acceleration (i.e.,
jerk or jolt), due to additional thrust to reverse descent.

• Descent Mode: The reflected infrared should increase by
going from no reflected infrared (LM = 0.0) to some
amount (∆LM > 0.0), which would also cause a switch to
Ascent Mode, due to an eventual descent.

In the case of each metamorphic relation, the values of the re-
flected infrared are measured based on at least two applications
of the system within the same mode. While metamorphic rela-
tions may be described formally, in practice they are described
“typically in an informal manner using natural language,” [19]
as those above. The Descent Mode metamorphic relation, for
example, requires not just a first- or second-order derivative
like the Ascent Mode metamorphic relation, but a maximum
time before some reflected infrared would re-appear due to
a maximum expected operating height and thus a maximum
descent time. Worse, a formula-based metamorphic relation
(e.g., with derivatives) would not match the discretized version
implemented in code. In the remainder of this paper, these
two metamorphic relations will be referred to as MRascent and
MRdescent for the Ascent Mode (∆LM ≤ 0.0∧∆∆LM ≤ 0.0)
and Descent Mode (LM = 0.0 ∨∆LM > 0.0) metamorphic
relations, respectively.

3.2 Step (2): Identify Contextual MRs
Metamorphic relations are limited to the function over which
the relation compares, the path(s) in code over which the
function executes when producing comparable output, and
range of values applicable to the relation. Some metamorphic
relations cover a wider proportion of a system’s functionality,
while others are more constrained. Consider, for example,
the shortest path algorithm described in the background (Sec-
tion 2). While a metamorphic relation that switches the input
for the output ensures that the starting and ending locations do
not result in differing output, it is also possible that the same
incorrect (i.e., non-optimal) result is returned. A more robust
metamorphic relation would choose a third point and ensure
that traversing from the start to the new point and finally to
the end point would always be greater (i.e., in cases where
the point is selected off the optimal start to end path) or equal
(i.e., in cases where the point is selected on the start to end
path). That is, the output-based metamorphic relation indicates
the distance (i.e., absolute value of the results) are greater or
equal for a path from start (s) to the middle (m) to the end
(e) when compared to just the start to end (s to e):

|A(G, s,m)|+ |A(G,m, e)| ≥ |A(G, s, e)|. (3)

This difference in the ability of a metamorphic relation to
detect errors extends beyond the relation itself to when the
inputs applicable to the relation are used. For example, a
shortest path algorithm is only used at specific times within the
context of an entire digital map application and a metamorphic



relation related to the shortest path would only be applicable
when the shortest path algorithm was in use. The context of
the metamorphic relation in Equation 3 is when the shortest
path algorithm is called.
Similarly, the metamorphic relations defined for our robotic
drone system are only applicable in the modes they are defined
for. That is, the MRascent metamorphic relation is only con-
textually applicable in the Ascent Mode while the MRdescent
metamorphic relation is only contextually applicable in the
Descent Mode. Since descent mode is applicable whenever
the last infrared measurement was non-existent, the contexts
of MRdescent and MRascent can be defined as LMt−1 = 0
and ¬(LMt−1 = 0), respectively, where LM is infrared light
measured and t is time.
The contextual metamorphic relations are:

(LMt−1 = 0) =⇒ MRdescent (4)
¬(LMt−1 = 0) =⇒ MRascent (5)

Importantly, the contextual metamorphic relations only fail if
they are contextually relevant and in violation of the metamor-
phic relation. The applicability of the set of contexts (C) can
be measured for any specific scenario or even completeness
against unsatisfied scenarios when considering all contexts:

|C|∨
i=1

Ci, (6)

though just because a metamorphic relation is contextually
relevant the relation may not be able to verify all aspects
of that functionality (e.g., the first version of the shortest
path algorithm metamorphic relation). If any contexts may
be satisfied simultaneously, they must be prioritized in order
to determine the run-time adaptation. In the case of our
contextual metamorphic relations, there is no overlap.
Just as metamorphic relations can be used to generate pre-
deployment tests, contextual metamorphic relations can be
used for that purpose as well. Typically, a stochastic search-
based method is used to optimize for failures or novelty
in the metamorphic relation [12]. Contextual metamorphic
relations are a subset of metamorphic relations that are more
constrained and existing methodologies can be applied pre-
deployment. In this paper, however, we focus on triggering
run-time adaptation.

3.3 Step (3): Define Contextual Adaptations

A self-adaptive system should adapt when it encounters a
failure. Similarly, when a contextual metamorphic relation
fails, a contextually appropriate adaptation should take place.
Adaptations in our approach, just like metamorphic relations,
are manually defined and domain specific.
In the case of the contextual metamorphic relation defined in
Step 2, the following are selected as adaptations from previous
behavior:
• (LMt−1 = 0) =⇒ MRdescent fails:

– Increase thrust to slow descent, and
– Periodically increase thrust beyond gravitational pull.

• ¬(LMt−1 = 0) =⇒ MRascent fails:
– Revert to descent behavior.

The adaptations for each context are intended to ensure the
robotic drone system does not ascend uncontrollably and an
unexpectedly long descent does not gain too much velocity.
Both cases could be dangerous as high-velocity descent could
cause harm and, once the battery was exhausted, uncontrolled
ascent would eventually be uncontrolled descent.

3.4 Step (4): MAPE-K Implementation

In this step we use the contextual metamorphic relation
and their adaptations within a self-adaptive system MAPE-K
loop [16] to adapt for runtime fault tolerance. In the following
subsections we describe how we employ the monitor, analysis,
plan, and execute steps of the MAPE-K loop and our knowl-
edge definition.

3.4.1 Monitor

Consists of reading and storing sensor (external) and system
(internal) values for the contextual metamorphic relations in
order to support the assessment of the relations. For example,
our drone system may store previous infrared light measure-
ments (external) and commanded thrust values (internal).

3.4.2 Analyze

Each contextual metamorphic relation is assessed, based on
the previously stored values. If a relation is contextually
appropriate the metamorphic relation portion of the contextual
metamorphic relation is assessed.

3.4.3 Plan

In the event of a contextual metamorphic relation failure, a
pre-defined adaptation is selected. In the event of multiple con-
textual metamorphic relation failures adaptations are selected
based on pre-defined priorities between the relations.

3.4.4 Execute

Given a single adaptation, the system modifies its behavior
to the new behavior defined by the adaptation. Non-adapted
behavior is reinstated when the context of the contextual
metamorphic relation is no longer applicable.

3.4.5 Knowledge

In our case knowledge of the application domain is encoded
in the contextual metamorphic relation and their adaptations
as documented in the system documentation and implemented
in software.

3.5 Limitations and Threats to Validity

Our approach is not without known limitations and threats to
validity, including the correctness of the contextual metamor-
phic relations themselves. Specific limitations and threats to
validity for contextual metamorphic relations are as follows.
First, completeness is limited to scenarios that are visible
to the system due to the system only having access to the
“shared” actions in the environment. An error could be based
on “unshared” actions that are undetectable by the system



due to the set of sensors available [20]. Any system that
interacts with an external environment is likely to include this
limitation.
Second, both metamorphic relations and the adaptations are
defined manually. Based on their manual definition and the
accessibility of “unshared” environmental information there
is no guarantee that all scenarios have a contextually relevant
metamorphic relation that can verify each scenario. Additional
future work is planned related to coverage and completeness
of contextual metamorphic relations, including relations based
on both system and environmental monitoring [8].
Third, contextual metamorphic relations must be defined over
differing inputs that occur while the system is running, based
on the number of results related within the relation. In the case
of the contextual metamorphic relations defined in this paper,
two different values in time are used. Standard metamorphic
relations can be defined for a wider variety of different inputs,
rather than just those that change over time since they are not
used at run time. While we acknowledge these limitations, our
approach is not negatively impacted in situations where the
set of sensors is fixed in an existing system and appropriate
metamorphic relations exist over time.
Finally, each metamorphic relation has limited fault detection
capabilities, and some are more limited than others (e.g.,
the source/destination reversal in the metamorphic relation in
Equation 2 is less effective than adding a mid-point in Equa-
tion 3). Contextual metamorphic relations are similarly limited
while also being limited to only the scenarios where they
are contextually relevant. Assessing contextual metamorphic
relation fault detection capabilities is targeted in future work.

4. RESULTS

In this section we apply a simulation of several run-time
scenarios that exercise the system behavior, contextual meta-
morphic relations, and adaptations of our robotic system. Each
scenario includes a surface (e.g., a hand) that reflects infrared
light and starts at a height of zero and increases to one meter
over the course of a second, then remains at one meter. The
initial height of the drone varies depending on the scenario.
Please note that the simulation simplifies specific physical
aspects, including wind resistance and noise and operates over
100 iterations per simulated second.

4.1 Non-Adaptive Flight

We demonstrate two non-adaptive flights from different
heights: 5 meters and 0 meters. Figure 3 shows the height
of the reflective surface (black line), the height of the robotic
drone system with a 5 meter initial height (black dots), and
the height of the robotic drone system with a 0 meter initial
height (black dashes).
While the robotic drone system that starts from the ground
(dashed line) tracks well with the infrared reflection surface
and follows above it due to the infrared reflection, the drone
that starts at a higher position (5 meters) fails to adjust its
downward speed without any indication of its position relative
to the surface reflecting the infrared light until it is within

Figure 3. Non-Adaptive Flight from 0 and 5 Meters

range of the reflectively. Worse, we can see that at roughly
half a second it goes lower than the infrared reflection surface
(i.e., collides with) when it should hover above the surface.

4.2 Uncontrolled Ascent

Uncontrolled ascent may occur with a non-adaptive system in
two cases. First, a sensor fault leading to a “stuck on” value
indicating continual infrared light reflection, even when no
reflective surface nearby. Second, a high amount of natural
light can provide infrared light to the sensor that is not
reflected from the light on the robotic drone system itself.
Each of these cases are examples of expressed uncertainty
that could impact the controls of the robotic drone system.
Figure 4 shows the height of the reflective surface (black line),
the height of the non-adaptive robotic drone system with a
0 meter initial height (black dashes), and the height of an
adaptive robotic drone system with a 0 meter initial height
(black dots).
Uncontrolled ascent is another impact of uncertainty on our
robotic system with a significant effect on both continued
use of the system, especially when outside, and subsequent
safe return to the ground. When comparing the non-adaptive
and adaptive systems in Figure 4 both are unable to read
anything but an erroneous large infrared reflection. The non-
adaptive robotic drone system continually attempts to fly out
of the infrared reflection range. The adaptive system, however,
contextually fails the metamorphic relation and adapts to a
lower amount of thrust interspersed with periodic increases
(causing one second long hops at 1 and 3 seconds). While the
adaptive version is not nearly as compelling as a correctly
functioning drone, it is at least minimally interactive and
significantly safer than a continuously ascending drone that



Figure 4. Results for Continuous Infrared Light

disappears only to fall at great speed somewhere unexpected
when the battery is exhausted.

4.3 Uncontrolled Descent

Uncontrolled descent may occur when a sensor fault leads to
a “stuck off” value indicating no infrared light reflection, even
when a reflective surface is nearby. This case is an example
of expressed uncertainty that could impact the controls of
the robotic drone system. Figure 5 shows the height of the
reflective surface (black line), the height of the non-adaptive
robotic drone system with a 5 meter initial height (black
dashes), and the height of an adaptive robotic drone system
with a 5 meter initial height (black dots).
A lack of sensed infrared light leads to a less problematic
scenario than watching your drone fly away into the clouds, but
still results in undesired behavior. The non-adaptive version of
the robotic drone system simply reduces thrust to its minimal
level searching for reflected infrared light. However, since
no infrared light will be detected, the drone continues into
uncontrolled descent. In the descent from 5 meters the drone
reaches a maximum velocity of just under 50 miles per hour
(49.2mph). The adaptive version, after some amount of time
not seeing an increase in infrared light compared to previous
iterations, adapts to a higher thrust that still allows for descent
with periodic increases in thrust. The adaptive version, when
dropped from 5 meters reaches a maximum velocity of just
under 9 miles per hour (8.9mph).

4.4 Adaptive Flight

Finally, we demonstrate two adaptive flights from different
heights: 5 meters and 0 meters. Figure 6 shows the height
of the reflective surface (black line), the height of the robotic

Figure 5. Results for Non-Existent Infrared Light

drone system with a 5 meter initial height (black dots), and
the height of the robotic drone system with a 0 meter initial
height (black dashes).

Figure 6. Adaptive Flight from 0 and 5 Meters

In comparison to the previous non-adaptive flights in Figure 3
without sensor or environmental uncertainty, the flights in
Figure 6 include the contextual metamorphic relations and
associated adaptations. While the flight starting at 0 meters
behaves the same as before, when starting at 5 meters (about



16.5 feet, the rough equivalent of being dropped out of a sec-
ond floor window) the descent mode contextual metamorphic
relation fails and the descent adaptation is enabled. Not only
does this reduce the maximum speed of the fall from 47 miles
per hour to just under 8 miles per hour (7.8mph), but the
transition to following the infrared reflecting surface at roughly
1.5 seconds no longer passes below (i.e., collides with) the
reflecting surface, as it did in Figure 3.

4.5 Results Overview

Toy drones, like the one that inspired the robotic drone system
in this paper, are not designed for robust behavior. However,
the default behavior in the face of uncertainty provides much
to be desired. The application of two computationally simple
contextual metamorphic relations and associated contextual
adaptations covered the two major functional modes of this
simple robotic drone system and mitigated negative function-
ality without a priori knowledge of the expected results.

5. APPLICABILITY

While the drone system described in the previous two sections
can make use of contextual metamorphic relations to address
sensor faults that would cause dangerous scenarios, it is only
a single case study. In this section we illustrate the use of
contextual metamorphic relations on a class of proximity-
enabled responsive systems described in the background sec-
tion (Section 2).
Mirroring our approach (Section 3, we manually identify our
metamorphic relations. Then we identify our context to create
contextual metamorphic relations and define contextual adap-
tations to tolerate detected faults detected at run-time. Finally,
we implement our adaptations via a MAPE-K loop [16].

5.1 Step (1): Identify MRs

Given the state diagram in Figure 2, we would expect that
all states (i.e., “Wait”, “Sense”, and “React”) would be
visited over time. That is, the operation should be performed
given some sensed proximity (e.g., opening an automatic door
for an automatic door system) and that there should be times
when no proximity is detected and the door stays closed while
in the “Wait” state.
A standard pre-deployment test can verify that the operation
is performed when proximity is sensed. However, a sensor
failure or aberrant environmental scenario may cause unde-
sired behavior due to the fault. For example, if the sensor
is damaged or someone stands in front of the automatic door
system without entering, then the operation will continue to be
performed and the “Wait” state will no longer be reachable.
The door, in this example, would never fully close for any
period of time.
An output-based metamorphic relation would compare the
outputs over a time period larger than the operation time frame
(i.e., creact in Figure 2) and find they are different, as shown
in the following equation:

Operationt ̸= Operationt+creact
, (7)

where “Operation” is the state of the system’s operation (e.g.,
opening, closing, open, or closed for an automatic door) and
t is a current time.

5.2 Step (2): Identify Contextual MRs

Problematically, the metamorphic relation in Equation 7 is
not always valid, as a metamorphic relation should be. For
example, if no proximity is sensed the operation will continue
to be the same and the metamorphic relation is not valid
or applicable. Given the system and environmental context
we must add a contextual component to create a contextual
metamorphic relation.
However, the metamorphic relation in Equation 7 is valid for
a time period of creact after proximity has been sensed. That
is, while the equation:

0 < t− tproximity < creact + cwait, (8)

where t is the current time, tproximity is the time proximity
was sensed, and creact + cwait is the time for the system
to perform the operation and wait until the operation can
be performed again. The contextual metamorphic relation, as
defined by the equations above is:

0 < t− tproximity < creact =⇒
Operationt ̸= Operationt+creact+cwait

.
(9)

5.3 Step (3): Define Contextual Adaptations

Based on the contextual metamorphic relation in Equation 9,
several adaptations are possible when a fault is detected:

• The cwait time can be decreased to allow for re-engagement
of the operation more quickly. For example, the water in a
motion-activated faucet could turn on again sooner if it is
re-engaged directly after the wait when it turns off.

• The creact time can be increased to allow the operation to
take longer. For example, if an automatic door is not open
long enough for people to walk through it would automat-
ically re-open after the cwait time period necessitating a
longer opening time (i.e., a longer creact).

• The cwait time can be increased to increase the time
between operations. For example, a motion-activated paper
towel may stop or slow dispensing if it is continually
dispensing.

While the adaptations to improve tolerance of specific faults
differ by domain, the contextual metamorphic relation is
applicable to multiple proximity-enabled responsive systems.

5.4 Step (4): MAPE-K Implementation

The implementation of the MAPE-K loop mirrors that of the
implementation described in the approach (Section 3). Regard-
less of the contextual metamorphic relation, the MAPE-K loop
implementation remains the same. In the next subsection we
will discuss the general applicability of not just the MAPE-K
loop implementation, but of contextual metamorphic relations
themselves.



5.5 Contextual Metamorphic Relation Applicability
Identifying metamorphic relations manually is difficult and
requires detailed knowledge and understanding of not only the
system to be tested, but also the system domain. This challenge
is exacerbated as systems become more complex resulting
in greater variation in behavior due to both system and
environmental factors. While adding an additional contextual
expression adds complexity to a metamorphic relation, it also
restricts the metamorphic relation to a smaller subset of the
system’s functionality. This additional term restricts contextual
metamorphic relations to a subset of standard metamorphic
relations but also makes identifying metamorphic relations for
smaller ranges of system functionality more practical.
Despite the wide range of applicable of standard metamor-
phic relations [6] we have not found contextual metamorphic
relations to be less applicable. Several methods of specifying
software in individual components (e.g., feature models [21])
or identifying individual modes for testing (e.g., decision table
or equivalence class testing [22]) inherently include contextual
expressions. We believe that the reconfigurations of adaptive
software, as discussed in [23], can be assessed via contextual
metamorphic relations where the context is based on the source
of the reconfiguration. The oracle problem in [23] is addressed
by metamorphic relations specific to reconfiguration when
the reconfiguration is deterministic within the context of the
contextual metamorphic relation.
Given the logical and structural componentization of software
systems, the wide ranging applicability of metamorphic re-
lations are still likely to be applicable for contextual meta-
morphic relations. However, rather than additional complexity
within the metamorphic relation directly to ensure a valid
relation the applicability can be defined outside of the meta-
morphic relation itself.

6. RELATED WORK

Self-adaptive systems have employed a variety of approaches
to control autonomous activity including machine learning,
hand-crafted policies, multi-agent systems approaches, and
control-theoretic approaches as defined in a recent survey by
Porter et al. [24]. We discuss hand-crafted policies, machine
learning and statistical approaches, control-theoretic work, and
test-case adaptation below.
Contextual metamorphic relations are a hand-crafted policy,
though the relations differ in how they identify scenarios that
required adaptation. Hand-crafted policies that use run-time
monitors to detect failure [25] or monitor application health
via frameworks [26] or utility functions [27]–[29] rely on pre-
deployment differentiation of positive and negative behavior.
Methods exist to predict behavior to enable resilient run-
time monitors [30] manage uncertainty, but still rely on direct
measurements of expected behavior. Metamorphic Runtime
Checking has been introduced [31], but does not consider
metamorphic relations that are not applicable to the state of
the program. As far as the authors are aware, no other work
uses metamorphic relations to trigger adaptation at run time
to ensure tolerance to faults.

Machine learning approaches have been used to successfully
learn adaptation [32], reduce the adaptation space [33], and
have even been combined with control theory [34]. However,
these methods and other machine learning techniques [35]
require computational resources not necessary for contextual
metamorphic relations. Similarly, rigorous statistical meth-
ods to assess dynamic behavior of software systems that
change behavior (i.e., adapt) during execution have been de-
veloped [36], [37]. However, contextual metamorphic relations
allow for adaptation due to detected failures at runtime rather
than statistical guarantees on the breadth of previously run
tests. Such statistical methods could be employed on systems
that include adaptation from contextual metamorphic relations
for further guarantees.
Typical control-theoretic solutions [15] cannot be used to con-
trol both the ascent and descent due to the lack of a measurable
positioning error when the drone is too high, even when
optimizing the control’s parameters [34] or using machine
learning [38]. Methods that adapt the control itself to manage
behavior may still allow undesired behavior until the controller
has been adapted [39]. Control-theoretic solutions that employ
machine learning are more likely to mitigate uncertainty by
adjusting or adapting the control. The contextual metamorphic
relations in our approach, however, still trigger adaptation
without the computational expense of optimization or machine
learning at run-time.
Methods to address uncertainty in runtime verification have
utilized test case adaptation [40] with success, while our
approach avoids direct comparisons to expected results via
metamorphic relations. To the best of the authors’ knowledge,
this is the only work that addresses the oracle problem by
employing metamorphic relations to specific contexts for both
pre-deployment verification and contextual runtime adaptation
after deployment.

7. CONCLUSION

In this paper, we have presented contextual metamorphic
relations, an approach to detect system failure and trigger
adaptation to support fault tolerance without explicit expected
results. We demonstrated contextual metamorphic relations by
applying them to a robotic drone system with various forms of
uncertainty as well as proximity-enabled responsive systems.
We showed that contextual metamorphic relations are able to
automatically detect scenarios necessitating adaptation at run-
time and trigger specific contextual adaptations due to faults
without a priori knowledge of expected results.
This demonstration is intended as a proof of concept for
contextual metamorphic relations though we acknowledge
several threats to validity. First, only a single motion of the
reflective surface was used across all simulations. Second,
both the robotic drone system and the simulation itself are
simplified. Third, the time frame of the simulations is short.
Despite these limitations, the robot was simulated according
to physical laws, the robotic drone is complicated enough to
have real-world aberrant behavior in the face of uncertainty,
and the aberrant behavior was illustrated within the short



time frame of the simulations. Additionally, we discuss the
general applicability to a wider range of systems based on our
discussion of proximity-enabled responsive systems.
Future research directions include additional validation with
more complex systems and more realistic simulations over
greater periods of time. Additionally, we plan to address
the limitation of manually defined metamorphic relations and
adaptations to allow for automatically defined or derived
relations and adaptations based on system models or derived
from information gathered at run time. For both manually and
automatically defined metamorphic relations and contextual
metamorphic relations we intend to explore the applicability
of existing test assessment strategies (e.g., code coverage [22]
and mutation score [41]) to assess scenario coverage and
completeness. Finally, we plan to extend our work to handle
fuzzy or RELAXed [42], [43] properties to address additional
dimensions of uncertainty and adaptation.
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