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Abstract—It is challenging to design, develop, and validate a
dynamically adaptive system (DAS) that satisfies requirements,
particularly when requirements can change at run time. Testing
at design time can help verify and validate that a DAS satisfies its
specified requirements and constraints. While offline tests may
demonstrate that a DAS is capable of satisfying its requirements
before deployment, a DAS may encounter unanticipated system
and environmental conditions that can prevent it from achieving
its objectives. In working towards a requirements-aware DAS,
this paper proposes run-time monitoring and adaptation of tests
as another technique for evaluating whether a DAS satisfies, or
is even capable of satisfying, its requirements given its current
execution context. To this end, this paper motivates the need and
identifies challenges for adaptively testing a DAS at run time, as
well as suggests possible methods for leveraging offline testing
techniques for verifying run-time behavior.

I. INTRODUCTION

A dynamically adaptive system (DAS) must cope with
changing system and environmental conditions [1]-[4]. Testing
during design and implementation phases serves to verify and
validate that a DAS satisfies its specification within a given
set of expected operational contexts. Unfortunately, design-
time test cases are often static in nature and may contain un-
certainty due to partially informed decisions about the DAS’s
requirements and its expected execution environment [5], [6].
Moreover, the applicability of design-time test cases may
become limited as a DAS self-reconfigures in response to
changing requirements and environmental conditions. This
paper presents a vision for addressing the assurance of a DAS
with a run-time requirements-aware testing feedback loop that
can maintain consistency between design-time test cases and
the DAS as it evolves. In addition, the testing feedback loop
includes the refinement of the initial tests as the DAS monitors
itself and its execution environment.

It is practically impossible to identify at design-time ev-
ery possible operational context that a DAS may encounter
at run time [1], [4], [7], [8]. To address this concern, re-
searchers have developed design-time techniques for testing
adaptive systems [9]-[17], as well as numerous DAS-specific
assurance technologies that leverage run-time monitoring in-
formation [11], [18]-[21]. While these approaches provide
better coverage for testing the possible space of system
configurations at design-time, they are typically restricted
to evaluating whether a DAS satisfies requirements within
specific operational contexts that may differ from actual run-

978-1-4673-4401-2/13 © 2013 IEEE

169

time conditions. Moreover, test cases generated and evaluated
by these approaches are likely to gradually lose relevance
over time as the DAS adapts and the execution environment
changes.

This exploratory paper posits that a DAS should be
requirements-aware [4] and treat tests as first-class entities that
can evolve as requirements change and/or self-reconfigurations
are applied. Within the proposed vision, test evolution is a
multidimensional objective that must adapt and safely exe-
cute test cases based on the current context of the DAS.
Maintaining tests in a consistent state with an evolving DAS
should enable the DAS to reuse tests not only to verify that it
satisfies its specification at run time, but to also detect possible
conditions that warrant adaptation. In addition, modeling tests
as first-class and evolvable entities, coupled with a flexible and
requirements-aware framework, should also enable a DAS to
access and reuse a larger breadth of tools and techniques for
coping with system and environmental uncertainty at run time.

This work introduces MAPE-T, a feedback loop for
supplementing testing strategies with run-time capabilities
based on the monitoring, analysis, planning, and execution
(MAPE-K [3]) architecture for adaptive systems. In particular,
this paper defines the objectives of each key process as they
apply to the testing domain. We also identify challenges
to be addressed when adapting and executing tests at run
time, as well as possible enabling technologies for realizing
this framework. As with MAPE-K, the MAPE-T monitoring
process gathers information about the system and its execution
environment. The analysis and planning processes use this
information to select DAS components to test and how to
adapt test case inputs and expected outputs, respectively. The
execution process safely executes and evaluates the outcomes
of tests to determine if adaptation is necessary. The MAPE-T
loop is illustrated with a running example of a smart home
system [8].

The remainder of this paper is organized as follows. Section
2 motivates the need for adapting and executing tests at run
time. Next, Section 3 identifies key objectives and research
challenges for each key process in the testing feedback loop.
Finally, Section 4 summarizes the proposed adaptive and run-
time testing framework.
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II. MOTIVATION

This section motivates the need for adapting and executing
test cases at run time as a means to provide run-time assurance
in a DAS. Specifically, we introduce the smart home system
and use it to illustrate challenges in maintaining test specifi-
cations consistent with an evolving adaptive system.

A. Smart Home

A smart home [8] provides assistance to a patient by con-
tinuously monitoring and diagnosing the patient’s condition,
including prescribed diet, body temperature, and target blood
pressure and glucose levels. A network of servers and sensors
can provide the necessary infrastructure of a smart home, and
may be modeled as a DAS.

B. Run-Time Testing Challenges

Traditional testing methods provide assurance for software
systems based on anticipated executing conditions. A DAS,
however, often operates in changing and possibly adverse
contexts that may invalidate its initial set of requirements and
test specifications. To provide this assurance to a DAS, existing
assurance techniques may need to be extended to handle run-
time information at run time. The following points highlight
key differences between traditional offline testing approaches
versus what is required to test an adaptive system at run time,
motivated by the need to provide a consistent smart home
system.

Test Case Generation. Test cases explore how different
ranges, boundaries, and combinations of input values affect
the outputs of software modules with regards to their require-
ments. In general, traditional testing techniques treat inputs
and expected outputs as fixed, static values throughout the
testing process. However, the DAS, its requirements specifica-
tion, and its environment can change and thereby cause input
and expected output values to no longer be representative test
cases. Currently, developers have to manually identify and
reconcile divergences between the system, its requirements,
execution environment, and test specification. Unfortunately,
for an adaptive system this manual identification and reconcili-
ation process may be open-ended. For example, with respect to
the smart home, dynamic test case generation and refinement
can occur when a new sensor is added into the system, changes
to the patient’s prescribed diet occur, or new regulations are
enacted.

When to Test. Testing of non-adaptive systems tends to
occur during the development cycle. While testing efforts
may decrease once the software is released, testing can and
often does continue to be performed whenever the system is
modified or extended to ensure changes do not break existing
functionality. Moreover, traditional post-deployment testing is
usually conducted on an isolated instance of the system to
prevent introducing errors into a production environment. In
contrast, post-deployment testing of an adaptive system must
be conducted at run time upon the live system, often in
response to changes in its operational context. This implication
requires developers to identify when tests can be executed

upon a live system without adversely affecting its behavior.
Within the smart home example, tests can be executed peri-
odically, directly after test cases or components in the smart
home are adapted, or when available resources support run-
time testing. It may also be possible to isolate certain test cases
to prevent failures from impacting live-system execution.

How to Test. Numerous established methods exist for test-
ing software systems at design time [22], each verifying and
validating the system through different means. For instance,
at design time, oracles may determine the outcome of test
cases, and various strategies such as black-box, white-box,
equivalence classes, and boundary testing may be used to
ensure software is sufficiently mature for release. Existing
run-time techniques include regression testing [23], run-time
verification [24], and search-based methods [25]. Each of these
testing strategies impose different requirements upon the sys-
tem under test, from the granularity of information available
about the system to the resources required to execute the
test strategy. Adaptive systems should leverage these testing
strategies at run time. However, applying these techniques at
run time upon a live DAS requires assurance that tests will
not interfere with the expected functionality and behavior of
the system. For example, in a smart home, run-time testing
must preserve system resources required for basic functionality
while also ensuring data, such as sensor data for critical patient
monitoring, is continuously available and in a consistent,
secure state.

Impact and Mitigation of Test Results. In traditional
systems, failed tests show that the software system violates
requirements and typically result in updating the codebase to
fix the issue. Common repair strategies require developers to
identify what triggered the test failure and then resolve the is-
sue by generating a patch or fixing the bug, each of which may
require software to be re-validated to provide a new release.
A DAS, however, can leverage both monitoring information
to diagnose problems and its ability to self-reconfigure at run
time to achieve the same corrective objectives. For example, a
smart home could use its monitoring information to evaluate its
run-time operational context and determine if a test case failed
because of a fault within the smart home or because a clinician
or sensor provided an invalid or inaccurate value. Moreover,
the smart home can reuse failed tests and monitoring data to
identify specific components that either require adaptation or
are unsuitable for the current context.

III. MAPE-T FRAMEWORK

This section overviews the proposed MAPE-T loop, as
shown in Figure 1. This loop is an extension to the standard
MAPE-K [3], but revised to support run-time testing of a
DAS. Testing with MAPE-T comprises four parts: monitor-
ing, analyzing, planning, and executing. Monitoring observes
system and environmental changes. Analyzing identifies and
selects individual test cases to perform at run time. Planning
adapts test inputs and outputs as needed and schedules run-
time testing. Executing performs the scheduled test plan and
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triggers any necessary adaptations, as well as adjusts any
expected outcomes as needed.

Monitoring

/ - Observe contextual change N\

Executing Analvai
Analyzing
Tes@—’ - DAS component/test selection
- Identify test adaptation points

- Test evaluation

- Result analysis

- Outcome adjustment
- Adaptation triggers

L

Fig. 1. MAPE-T loop

Next we present the objective, description, challenges, and
enabling technologies for each element in the MAPE-T loop.

Planning

- Test scheduling
- Input/output adaptation

A. Monitoring

Objective. Observe and identify changes within the system
and its environmental context.

Description. Monitoring enables a DAS to be aware of its
operational context and how it can affect the DAS’s ability
to continuously satisfy requirements. Monitoring is both an
internal and external process that performs introspection upon
components in the DAS as well as measures observable prop-
erties about its execution environment, respectively. Monitor-
ing information is often crucial for identifying possible causes
for divergences between expected and actual test output.

Key Challenges. The inherent difficulties associated with
monitoring within the context of MAPE-T are similar to the
challenges encountered when monitoring within the context
of MAPE-K [3]. In particular, it is challenging to determine:
what properties of the adaptive system and its execution envi-
ronment must be observed; what sensors, or sensor value ag-
gregations, can measure desired properties; how often should
monitoring data be gathered; and how does uncertainty, in the
form of imperfect and possibly unreliable sensors, affect gath-
ered values. Ultimately, the monitoring process must carefully
balance these concerns such that it provides other processes in
the MAPE-T architecture with useful monitoring information.
For instance, a smart home needs to collect information about
the patient from sensors that observe behavior, such as patient
movement and food consumption. Information regarding the
tests themselves should also be collected, such as the time of
last execution.

Enabling Technologies. We envision that the MAPE-T
monitoring process can reuse the monitoring infrastructure
already required by the MAPE-K architecture. Both MAPE-
T and MAPE-K depend on a monitoring infrastructure that
provides information about a DAS’s components and its exe-
cution environment. In addition to a context-aware monitoring
process, however, the MAPE-T architecture must also period-
ically observe success and failure rates of tests at run time,
as well as the consistency between test cases and the system
and its environment. As a result, enabling technologies must
support traditional MAPE-K requirements and the following:

instrumentation of tests such that a DAS is continuously aware
of their outcomes; and traceability between requirements and
test cases to determine test relevance as the environment and
requirements change as the system evolves in response.

B. Analyzing

Objective. Identify individual test cases to adapt and select
specific tests to execute at run time.

Description. Test specifications are likely to become ir-
relevant as a DAS self-reconfigures in response to changes
in its requirements and execution environment. The MAPE-T
architecture ensures that test cases continue to be consistent
and relevant even as the DAS evolves at run time. To achieve
this objective, the analysis process must leverage monitoring
information to identify divergences between tests and the
DAS’s context and configuration. Each divergence must be
resolved and, consequently, corresponding components must
be tested to ensure the system is capable of satisfying its
requirements in its new operational context. This analysis
process must carefully balance concerns between maximizing
test coverage and minimizing testing overhead, as it is unlikely
that all tests will require execution at any given point in
time. Moreover, test selection must also address the possible
explosion of artifacts within the state-space of the DAS that
can result in an overwhelming volume of inputs and outputs
for a DAS to evaluate and analyze.

Key Challenges. We envision that three key challenges must
be addressed when designing and implementing the analysis
process in MAPE-T. First, the analysis process must reliably
identify important changes within the adaptive system and its
execution environment. Second, the analysis process must also
evaluate precisely how these changes impact the consistency
and relevance of individual test cases. Lastly, because of adap-
tation, the analysis process must also continuously resolve and
update traceability links between individual requirements, the
DAS’s components, and test cases. For example, a smart home
may recognize that a temperature gauge requires replacement
and will need to adapt requirements and test cases if the units
differ between the old and new gauge. Specifically, the older
may be in Fahrenheit, and the newer in Celsius.

Enabling Technologies. We envision that the MAPE-T
analysis process will leverage techniques from formal meth-
ods, run-time requirement adaptation, and non-functional re-
quirement quantification. Falcone et al. [9] proposed a formal
approach for verifying component-based systems by automat-
ically instrumenting systems via a set of Labeled Transition
System (LTS) properties. LTS is a formal method for specify-
ing a set of states and transitions, with each transition being
labeled by an action. By formalizing a DAS’s state space,
it is possible to streamline and monitor the relevant artifacts
within a system, and ensure that the tests being performed do
not overextend the DAS.

Requirements are typically developed with respect to a
target execution context and may become violated over time
as that context changes. Sawyer et al. [4] proposed treating
requirements as objects to be satisfied at run time in order
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to counter environmental uncertainty within a DAS. In or-
der to convert requirements to run-time entities, goal- and
architecture-based reflection [7] may be applied. Once require-
ments have become objects, run-time reasoning [20] may be
applied in order to consider tradeoffs, as the satisfaction of one
requirement may impede the satisfaction of another. A similar
approach can be taken for testing by converting test cases into
run-time entities, allowing for reasoning to be applied to test
entities.

Finally, it is beneficial to consider non-functional require-
ments when designing a system to be requirements-aware [4].
Non-functional requirements provide important constraints on
how the system functions, typically with regards to perfor-
mance, efficiency, or usability. Filieri [12] and Villegas [26]
have introduced methods for deriving measurable values from
non-functional requirements, paving the way for them to
be incorporated as run-time entities for participation in the
requirements-aware framework. Using identified metrics, non-
functional requirements can be mapped into adaptive, run-time
objects, enabling system functionality to evolve along with
system execution.

C. Planning

Objective. Adapt expected inputs and output and schedule
run-time testing.

Description. The planning aspect of the MAPE-T archi-
tecture defines a test plan for run-time DAS testing with
three key considerations. First, test execution is scheduled
in such a manner that testing does not adversely affect
DAS performance. Second, test case parameters are created
and maintained in order to ensure proper test specification
coverage. Third, adaptation points are defined within test case
parameters to provide plasticity in inputs and expected outputs,
thereby allowing test case parameters to evolve in order to
better reflect the system and environmental contexts in which
the DAS executes.

Key Challenges. Reliably measuring adaptation costs and
minimizing side effects is an overarching challenge when
scheduling tests at run time. Ensuring that test case execution
does not interfere or delay required adaptations is of utmost
importance. As a result, a DAS must ensure that resources are
not overextended by performing run-time testing. Likewise,
methods for automated detection of unused processor cycles
must be considered as well. The planning process must also
define triggering conditions for the evolution of test inputs
and outputs, and decide if the test cases themselves will drive
adaptation, or if the results of testing will be simply handed
off to a decision engine for further processing. Furthermore,
modifying tests to support the inclusion of run-time monitoring
information must also be acknowledged. For example, a smart
home can schedule intensive self-tests during a patient’s sleep
cycle as resources will typically be more readily available at
that time. Analysis of test results may also be performed in
order to determine if adaptations are necessary to test cases.

Enabling Technologies. Continuous testing actively per-
forms tests on a system under development and must consider

the setup and maintenance of test parameters, test scheduling,
and the decisions on which subset of test cases should be
executed. Saff and Ernst studied the effects of continuous
testing by using regression tests to aid software develop-
ers as they write code [27], [28]. In their approach, spare
processor cycles were used to actively run regression test
cases and verify that software modifications continue to satisfy
requirements. Nguyen et al. [11] applied a similar concept to
distributed agent-based systems. In their approach, a dedicated
and automated testing entity coordinates the testing of other
system entities. Specifically, testing is performed by two
types of agents: monitoring and testing. The monitoring agent
reports faults detected within the system and the testing agent
generates test suites to be executed by other entities in the
system, thereby providing continuous testing throughout the
lifetime of the system.

An initial suite of test parameters can provide a suitable
starting point for run-time testing, however as a DAS adapts,
so too must its test cases. To address this concern, the planning
process can supplement the initial suite of parameters with
run-time monitored values [29] in order to accurately test
the conditions that the DAS is experiencing during execution.
Search-based techniques may also be leveraged to explore
optimal test suite parameter configurations as well.

The use of search-based techniques to provide adaptive
test case generation can help to mitigate this challenge.
For instance, machine learning techniques using probabilistic
methods [15], [30]-[32] or evolutionary computation-based
techniques for exploring points of failure [16] could be con-
sidered as well.

Another dimension of run-time requirements satisfaction
can be the use of models at run time. Baresi et al. [33]
discussed methods for composition validation at run time via
an assertion language that can describe both functional and
non-functional properties. Morin et al. [34] proposed an ap-
proach that considers a DAS to be a dynamic software product
line, with adaptations represented as differing configurations
of software product lines (SPL). The goal of SPL design is
to share a common codebase with varying software products.
Tradeoffs in balancing object satisfaction are considered at
run time through model reasoning, providing a DAS with the
capability to continue satisfaction of its goals in the face of
adversity. Methods for reasoning over models at run time have
been proposed by Epifani et al. [35] as well.

Scheduling test cases transparently requires carefully bal-
ancing two competing concerns: maximizing the utilization of
system resources and minimizing adverse side effects, such
as interference with system behavior. As with continuous
testing methods [27], [28], it may be possible for a run-
time management framework to address the first concern by
executing test cases whenever spare computing cycles become
available in a DAS. Likewise, although resource contention
tends to be more of a problem in resource constrained systems,
a DAS can also leverage selective testing strategies to filter
extraneous tests that will consume cycles and energy without
focusing on areas that might cause the system to adapt. For
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example, these two concerns might restrict a DAS operating
in a low-power mode to avoid executing test cases that may
violate its current power optimization scheme.

Deciding on the subset of tests to execute at run time is
essentially a multidimensional optimization problem, incorpo-
rating considerations for performance, scheduling, and adapta-
tion penalties that may occur. Assuming that these objectives
have been quantified, it may be possible to use algorithms
specifically designed for multiobjective optimization, such as
NSGA-II [36].

D. Executing

Objective. Perform the test plan and analyze results, adjust
expected outcomes, and trigger adaptations within the DAS,
its requirements, or the testing framework.

Description. The execution phase of MAPE-T is concerned
with the execution of and response to the scheduled testing.
As testing is performed, the results must be analyzed and any
necessary adjustments added to run-time entities, specifically
their expected inputs and outputs. If necessary, adaptations
may be triggered during this phase as well. In addition, MAPE-
T provides for reconfiguring the requirements and testing
frameworks.

Key Challenges. In order to properly execute and evaluate
tests at run time, both requirements and tests must be converted
into first-class entities within the system. This transformation
is not a trivial task, as it can be quite difficult to dis-
till requirements, especially non-functional requirements, into
quantifiable entities. The same issue arises when converting
test cases into adaptable entities. Another challenge occurs
in deciding how to limit the adaptability of these entities, as
providing excessive plasticity can cause adverse effects for
DAS execution. Lastly, adapting the acceptance rate for a test
suite will be a challenge as well. For instance, execution of
self-tests that verify proper function of a motion sensor within
a smart home must take into account time of day. If the patient
is asleep, then naturally any tests that check a motion sensor
will fail, and these results must be filtered from consideration.

Enabling Technologies. As the execution context of a DAS
evolves, it is possible that system requirements must change
in order to accommodate the new environment. Souza et al.
proposed eliciting awareness requirements to be treated as run-
time entities [37] in order to monitor violations over time.
Once a predetermined amount of violations occur, parameters
that have been previously identified as important to that
requirement may be adapted in order to improve its chances
for satisfaction. Their approach can be modeled as a set of
operations over a goal model, providing the capability to
be modeled at run time. Similar approaches also make use
of requirements as run-time entities [4], [7], and provide
capabilities for requirements reasoning. These requirements-
aware systems are a step towards handling uncertainty in
a systematic manner. With the addition of languages such
as RELAX [8] and FLAGS [38], it is possible to make
requirements less rigid and brittle through fuzzy logic.

While run-time testing has yet to fully gain traction in live
systems, it has been successfully applied within hardware-
based adaptive systems [39], typically through the use of field-
programmable gate arrays. Run-time testing methods within
hardware systems are concerned with component and system
execution failures, and must reconfigure the system accord-
ingly [40], [41]. These systems have the additional limitation
of using embedded CPUs, and must therefore consider power-
and memory-optimizations in their design. Through monitor-
ing, redundancy, and a well-defined procedure for recovery,
Subhasish et al. [39] have provided a framework for run-time
testing and reconfiguration of a hardware DAS. This approach
allows a system to continuously function without external
intervention, however it can be limited by the severity and
recurrence of faults. Techniques from the hardware domain
may be reused in software, such as using redundant controllers
for monitoring and correcting faults as proposed by Nguyen et
al. [11].

IV. CONCLUSION

This exploratory paper proposed a vision for MAPE-T,
a requirements- and test-aware feedback loop architecture
focused on executing tests at run time to verify that an adaptive
system satisfies its requirements. MAPE-T is based on the
monitoring, analysis, planning, and execution processes as
defined in MAPE-K, but tailored for testing purposes. Several
key challenges have been identified in realizing a MAPE-T
architecture, including assurance that run-time testing does not
strain or overextend a DAS, provisions for reliable traceability
between test cases and requirements, safe adaptation triggering
in an evolving environment, and specification of adaptation
constraints. In order to assist in the mitigation of uncertainties
within system and environmental contexts, we have proposed
adopting and extending traditional testing strategies for run-
time application within a DAS.
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