
Validating Code-Level Behavior of Dynamic
Adaptive Systems in the Face of Uncertainty

Erik M. Fredericks, Andres J. Ramirez, and Betty H. C. Cheng

Michigan State University, East Lansing, Michigan 48824-1226, USA
{freder99, ramir105, chengb}@cse.msu.edu

Abstract. A dynamically adaptive system (DAS) self-reconfigures at
run time in order to handle adverse combinations of system and environ-
mental conditions. Techniques are needed to make DASs more resilient
to system and environmental uncertainty. Furthermore, automated sup-
port to validate that a DAS provides acceptable behavior even through
reconfigurations are essential to address assurance concerns. This paper
introduces Fenrir, an evolutionary computation-based approach to ad-
dress these challenges. By explicitly searching for diverse and interesting
operational contexts and examining the resulting execution traces gen-
erated by a DAS as it reconfigures in response to adverse conditions,
Fenrir can discover undesirable behaviors triggered by unexpected en-
vironmental conditions at design time, which can be used to revise the
system appropriately. We illustrate Fenrir by applying it to a dynami-
cally adaptive remote data mirroring network that must efficiently diffuse
data even in the face of adverse network conditions.

Keywords: search-based software engineering, novelty search, genetic
algorithm, software assurance

1 Introduction

A dynamically adaptive system (DAS) can self-reconfigure at run time by trig-
gering adaptive logic to switch between configurations in order to continually
satisfy its requirements even as its operating context changes. For example, a
hand-held device may need to dynamically upload an error-correction communi-
cation protocol if the network is lossy or noisy. Despite this self-reconfiguration
capability, a DAS may encounter operational contexts of which it was not ex-
plicitly designed to handle. If the DAS encounters such an operational context,
then it is possible that it will no longer satisfy its requirements as well as exhibit
other possibly undesirable behaviors at run time. This paper presents Fenrir,
a design-time approach for automatically exploring how a broad range of com-
binations of system and environmental conditions impact the behavior of a DAS
and its ability to satisfy its requirements.

In general, it is difficult to identify all possible operating contexts that a
DAS may encounter during execution [7, 6, 18, 28]. While design-time techniques
have been developed for testing a DAS [4, 20–22, 24, 25, 31], these are typically

2

restricted to evaluating requirements satisfaction within specific operational con-
texts and do not always consider code-level behaviors. Researchers have also
applied search-based heuristics, including evolutionary algorithms, to efficiently
generate conditions that can cause failures in a system under test to provide
code coverage [2, 15, 16]. Automated techniques are needed to make a DAS more
resilient to different operational contexts as well as validate that it provides
acceptable behavior even through reconfigurations.

This paper introduces Fenrir,1 an evolutionary computation-based approach
that explores how varying operational contexts affect a DAS at the code level
at run time. In particular, Fenrir searches for combinations of system and en-
vironmental parameters that exercise a DAS’s self-reconfiguration capabilities,
possibly in unanticipated ways. Tracing the execution path of a DAS can provide
insights into its behavior, including the conditions that triggered an adaptation,
the adaptation path itself, and the functional behavior exhibited by the DAS
after the adaptation. At design time, an adaptation engineer can analyze the
resulting execution traces to identify possible bug fixes within the DAS code, as
well as optimizations to improve the run-time self-adaptation capabilities of the
DAS.

Fenrir leverages novelty search [17], an evolutionary computation technique,
to explicitly search for diverse DAS execution traces. Specifically, Fenrir uses
novelty search to guide the generation of diverse DAS operational contexts com-
prising combinations of system and environmental conditions that produce pre-
viously unexamined DAS execution traces. Since we do not know in advance
which combinations of environmental conditions will adversely affect system be-
havior, we cannot define an explicit fitness function for generating the opera-
tional contexts. Instead, we opt for diverse operational contexts with the intent
of considering a representative set of “all” operational contexts. Fenrir then
executes the DAS under these differing operational contexts in order to evalu-
ate their effects upon the DAS’s execution trace. As part of its search for novel
execution traces, Fenrir analyzes and compares the traces to determine which
operational contexts generate the most diverse behaviors within the DAS.

We demonstrate Fenrir by applying it to an industry-provided problem,
management of a remote data mirroring (RDM) network [12, 13]. An RDM net-
work must replicate and distribute data to all mirrors within the network as links
fail and messages are dropped or delayed. Experimental results demonstrate that
Fenrir provides a significantly greater coverage of execution paths than can be
found with randomized testing. The remainder of this paper is as follows. Sec-
tion 2 provides background information on RDMs, evolutionary algorithms, and
execution tracing. Section 3 describes the implementation of Fenrir with an
RDM network as a motivating example. Following, Section 4 presents our ex-
perimental results, and then Section 5 discusses related work. Lastly, Section 6
summarizes our findings and presents future directions.

1 In Norse mythology, Fenrir is the son of Loki, god of mischief

3

2 Background

In addition to overviewing the key enabling technologies used in this work, this
section also overviews the remote data mirroring application.

2.1 Remote Data Mirroring

Remote data mirroring (RDM) [12, 13] is a data protection technique that can
maintain data availability and prevent loss by storing data copies, or replicates,
in physically remote locations. An RDM is configurable in terms of its network
topology as well as the method and timing of data distribution among data
mirrors. Network topology may be configured as a minimum spanning tree or
redundant topology. Two key data distribution methods are used. Synchronous
distribution automatically distributes each modification to all other nodes, and
asynchronous distribution batches modifications in order to combine edits made
to the data. Asynchronous propagation provides better network performance,
however it also has weaker data protection as batched data could be lost when
a data mirror fails. In our case, an RDM network is modeled as a DAS to
dynamically manage reconfiguration of network topology and data distribution.

2.2 Genetic Algorithms

A genetic algorithm (GA) [11] is a stochastic search-based technique grounded in
Darwinian evolution that leverages natural selection to efficiently find solutions
for complex problems. GAs represent a solution as a population, or collection,
of genomes that encode candidate solutions. A fitness function evaluates the
quality of each individual genome within the population in order to guide the
search process towards an optimal solution. New genomes are produced through
crossover and mutation operators. In particular, crossover exchanges portions of
existing genomes and mutation randomly modifies a genome. The best perform-
ing individuals are retained at the end of each iteration, or generation, via the
selection operator. These operations are repeated until a viable solution is found
or the maximum number of generations is reached.

Novelty search [17] is another type of genetic algorithm that explicitly searches
for unique solutions in order to avoid becoming caught in local optima. Novelty
search replaces the fitness function in a traditional genetic algorithm with a
novelty function that uses a distance metric, such as Euclidean distance [3], to
determine the distance between a candidate solution and its k -nearest solutions.
Furthermore, a solution may be added to a novelty archive in order to track
areas of the space of all possible solutions that have been already thoroughly
explored.

2.3 Execution Tracing

Following the execution path of a software system can provide insights into
system behavior at run time, as it may behave differently than intended due

4

to uncertainty within its operating context. Tracing system execution has been
applied to various aspects of software analysis, from understanding the behavior
of distributed systems [19] to identifying interactions between the software and
hardware of superscalar processors [23]. An execution trace can be generated by
introducing logging statements. Many different approaches to software logging
exist [34], however for this paper we consider a subset of branch coverage [10]
as our metric for tracing execution paths. Branch coverage follows all possible
paths that a program may take during execution, such as method invocations,
if-else, or try-catch blocks.

3 Approach

Fenrir is a design-time assurance technique for exploring possible execution
paths that a DAS may take in response to changing environmental and system
contexts. Conceptually, we consider a DAS (see Figure 1) to comprise a collection
of target (non-adaptive) configurations, TCi, connected by adaptive logic, Aij ,
that moves execution from one target configuration (TCi) to another (TCj) [35].
Therefore, the functional logic of the system (i.e., requirements) is implemented
by the target configurations, where each target configuration may differ in how
it implements the requirements (e.g., different performance requirements), and
how it may handle specific environmental conditions.

Fenrir starts with instrumented code for both the adaptive logic and func-
tional logic for a DAS. Then the set of operating contexts that can trigger DAS
self-reconfigurations are generated using novelty search, in order to provide a
diverse and representative set of environmental and system contexts that the
DAS may encounter during execution. These operating contexts are based on
different combinations of identified sources of uncertainty that may affect the
DAS at run time, where the combinations may be unintuitive, but feasible, and
therefore not anticipated by a human developer. Next, the instrumented DAS is
executed for different operational contexts, where each operational context will
have a corresponding execution trace that reflects the execution path of a DAS
as it self-reconfigures and executes its target configurations. This trace provides
information necessary to fully realize the complexity inherent within the DAS
as it executes and performs self-reconfigurations.

Figure 2 provides an overview of a DAS that has been instrumented with
logging statements. The instrumented DAS is split into two parts: Configuration
and Adaptation Manager. The Configuration refers to the collection of target
configurations connected by the adaptive logic as shown in Figure 1, and the
Adaptation Manager comprises a monitoring, decision logic, and reconfiguration
engine to manage the self-adaptation capabilities for the DAS. Together, these
two parts make up the system that can reconfigure itself at run time in order to
handle uncertainties within its operating context.

Logging statements are then inserted into both the Configuration and Adap-
tation Manager to provide an engineer with information regarding the target
configuration state, conditions that trigger adaptations, and steps taken dur-

5

...

An1

A1n

TC1 TCnTC2
A21

A12

An2

A2n

target
configuration

adaptive
logic

Legend:

Fig. 1. DAS comprising a collection of target configurations TCi connected by adap-
tation logic Aij .

ing self-reconfiguration at each time step throughout execution. Furthermore,
the instrumented DAS requires an operational context to specify the sources of
environmental and system uncertainty, as previously identified by the domain
engineer. The DAS generates a trace that represents the execution path for a
given set of environmental conditions.

operational
context

Execution
Trace (

Adaptation Manager

Instrumented DAS

TC1 TC2 TCn
A12

A21 An2

A2n

TC1condA12…AjiTCi)...

Fig. 2. Overview of an instrumented DAS.

The remainder of this section describes how Fenrir generates novel execu-
tion traces. First, we present an overview of Fenrir and state its assumptions,
required inputs, and expected outputs. We then discuss each step in the Fenrir
process.

3.1 Assumptions, Inputs, and Outputs

Fenrir requires instrumented executable code for a DAS to exercise the adap-
tive logic and functional logic triggered by different operational contexts. In
particular, the instrumented code within the DAS should provide a measure of
branch coverage in order to properly report the various execution paths that a
DAS may traverse. Furthermore, the logging statements should monitor possible
exceptions or error conditions that may arise.

6

Fenrir produces a collection of operational contexts, each with a correspond-
ing execution trace generated by the DAS. The operational contexts specify
sources of system and environmental uncertainty, their likelihood of occurrence,
and their impact or severity to the system. Each operational context may trigger
adaptations within the DAS, thereby creating a vast set of possible execution
paths. Execution traces contain information specific to each explored path, pro-
viding insights into the overall performance of the DAS throughout execution. In
particular, information regarding the invoking module, line number, a descrip-
tion of intended behavior, and a flag indicating if an exception has occurred is
provided for further analysis.

3.2 Fenrir Process

The data flow diagram (DFD) in Figure 3 provides a process overview for using
Fenrir. Each step is described next in detail.

Instrumented
DAS

Compute
Novelty and

Archive
Solutions

Operational
Contexts

Fenrir Archive

operational
contexts

(novel operational contexts,
operational traces)

operational
contexts

(operational contexts,
operational traces)

operational
contexts

Generate
Operational

Contexts

(1)(2)

process data store

agent data flow

Legend:

Sources of
Uncertainty

sources of
uncertainty

Domain
Engineer

Fig. 3. DFD diagram of Fenrir process.

Genome:

Sources of
Uncertainty

Dropped
Message

Delayed
Message

... Link
Failure

0.15 0.10

Probability Severity

Fig. 4. Genome representation.

(1) Generate Operational Contexts. Fenrir uses novelty search [17],
an evolutionary computation-based technique, to generate operational contexts
that specify the sources of environmental and system uncertainty. Operational
contexts are represented as genomes within a population. Each genome comprises
a vector of genes of length n, where n defines the number of environmental and
system sources of uncertainty. Each gene defines the likelihood and impact of
occurrence for each source. Figure 4 illustrates a sample genome used by Fenrir
to configure sources of uncertainty. For instance, the displayed genome has a
parameter for a network link failure that has a 15% chance of occurrence, and,
at most, 10% of all network links within the RDM network can fail at any given
time step. Each generated operational context is then applied to an instrumented
DAS, resulting in an execution trace. Both the operational context and execution

7

trace are provided as inputs to the novelty value calculation, as is described in
the following subsection.

Novelty search is similar in approach to genetic algorithms [11], however it
differs in the search objective. Novelty search aims to create a set of diverse
solutions that are representative of the solution space, whereas a genetic algo-
rithm searches instead for an optimal solution. The novelty search process is
constrained by a set of parameters that govern how new solutions are created.
These include population size, crossover and mutation rates, a termination cri-
terion, and a novelty threshold value. Population size determines the number
of genomes created per generation, and a starting population is randomly gen-
erated that specifies different sources of uncertainty based on the system and
environmental conditions. The crossover and mutation rates define the num-
ber of new genomes that may be created through recombination and random
modifications, respectively. The termination criterion defines the number of gen-
erations that the novelty search algorithm will run before termination, and the
novelty threshold provides a baseline value for inclusion of a solution within the
novelty archive. New genomes are created in each subsequent generation via the
crossover and mutation operators. Crossover creates new genomes by swapping
genes between two candidate genomes, and mutation produces a new genome by
randomly mutating a gene within the original candidate.

(2) Compute Novelty and Archive Solutions. Fenrir calculates a nov-
elty value for each solution within a population by first constructing a weighted
call graph (WCG) [1] from each corresponding execution trace then calculat-
ing the difference against every other solution within the novelty archive in a
pair-wise fashion. The WCG is an extension to a program call graph [27] and is
represented as a directed graph, with nodes populated by unique identifiers corre-
sponding to each logging statement, directed edges symbolizing execution order,
and weights representing execution frequency. Figures 5(a) and 5(b) present an
example of a WCG with corresponding example code, respectively, where each
node represents a statement from the execution trace, and each edge label rep-
resents the execution frequency (i.e., weight).

The novelty value is computed by calculating the differences in nodes and
edges between two WCGs, as shown in Equation 1, and then applying a Man-
hattan distance metric [3] to measure the distance between each WCG, as shown
in Equation 2. Any novelty value that exceeds the novelty archive threshold, or
is within the top 10% of all novelty values, is then added to the novelty archive
at the end of each generation.

dist(µi, µj) = len({v ∈ gi} ⊕ {v ∈ gj}) + len({e ∈ gi} ⊕ {e ∈ gj})) (1)

p(µ, k) =
1

k

k∑
i=1

dist(µi, µj) (2)

8

a:

c:
d:

a

c

b1

1 d
2

3

void main() {
 wrapper(TRUE);
}

b:

void wrapper(bool flag) {
 int i, k = 0;
 if (flag) {
 while (i < 3) ++i;
 else
 while (k < 2) --k;
 callFunction(i, k);
}

a. WCG b. Corresponding code.

Fig. 5. WCG Example.

Upon completion, Fenrir returns a set of operational contexts, each with
their corresponding execution trace stored in the novelty archive. Together, these
outputs provide insight into the behavior of the DAS throughout execution, in-
cluding triggers to self-reconfigurations, parameters for each target configura-
tion, raised exceptions, and unwanted or unnecessary adaptations. Unnecessary
adaptations refer to adaptations that may occur as the DAS transitions back and
forth between target configurations before finally settling on a new target con-
figuration to handle the current operating context. Unacceptable behaviors may
then be corrected through bug fixes, augmentation of target configurations, or by
introducing satisfaction methods such as RELAX [6, 33] that tolerate flexibility
in DAS requirements.

4 Experimental Results

This section describes our experimental setup and discusses the experimental
results found from applying Fenrir to an RDM application.

4.1 Experimental Setup

For this work, we implemented an RDM network as a completely connected
graph. Each node represents an RDM and each edge represents a network link.
Our network was configured to comprise 25 RDMs and 300 network links that
may be activated and used to transfer data between RDMs. Logging statements
comprise a unique identifier, module information such as function name, line
number, and a custom description, and are inserted into the RDM source code
to properly generate an execution trace. The RDM was executed for 150 time
steps, with 20 data items randomly inserted into varying RDMs that were then
responsible for distribution of those data items to all other RDMs. Furthermore,

9

the novelty search algorithm was configured to run for 15 generations with a pop-
ulation size of 20 individual solutions per generation. The crossover, mutation,
and novelty threshold rates were set to 25%, 50%, and 10%, respectively.

Environmental uncertainties, such as dropped messages or unpredictable net-
work link failures, can be applied to the RDM network throughout a given exe-
cution. The RDM network may then self-adapt in response to these adverse con-
ditions in order to properly continue its execution. A self-adaptation results in a
target system configuration and series of reconfiguration steps that enables a safe
transition of the RDM network from the current configuration to target configu-
ration. This adaptation may include updates to the underlying network topology,
such as changing to a minimum spanning tree, or updating network propagation
parameters, such as moving from synchronous to asynchronous propagation.

In order to validate our approach, we compared and evaluated the resulting
execution traces produced by Fenrir with the novelty metric previously intro-
duced in Equations 1 and 2. To demonstrate the effectiveness of novelty search,
we compared Fenrir execution traces with those generated for random opera-
tional contexts. We compared Fenrir results to random testing since we could
not define an explicit fitness function because we do not know a priori which
operational contexts adversely impact the system. As such, Fenrir provides a
means for us to consider a representative set of all possible operational contexts.
For statistical purposes, we conducted 50 trials of each experiment and, where
applicable, plotted or reported the mean values with corresponding error bars
or deviations.

4.2 DAS Execution in an Uncertain Environment

For this experiment, we define the null hypothesis H0 to state that there is
no difference between execution traces generated by configurations produced by
novelty and those created by random search. We further define the alternate hy-
pothesis H1 to state that there is a difference between execution traces generated
from novelty search (Fenrir) and random search.

Figure 6 presents two box plots with the novelty distances obtained by the
novelty archive generated by Fenrir and a randomized search algorithm. As this
plot demonstrates, Fenrir generated execution traces that achieved statistically
significant higher novelty values than those generated by a randomized search al-
gorithm (p < 0.001, Welch Two Sample t-test). This plot also demonstrates that
Fenrir discovered execution traces with negative kurtosis, thereby suggesting
that the distribution of operational contexts were skewed towards larger novelty
values. These results enable us to reject our null hypothesis, H0. Furthermore,
these results enable us to accept our alternate hypothesis, H1, as novelty search
discovered a significantly larger number of unique DAS execution paths when
compared to the randomized search algorithm. Figure 6 also demonstrates that
the solutions generated by Fenrir provide a better representation of the solution
space with fewer operational contexts, as the Fenrir box plot contains novelty
values from 30 solutions, and the randomized search box plot contains novelty
values from 300 solutions. As such, using Fenrir enables a DAS developer to

10

assess behavior assurance of a DAS in uncertain environments more efficiently,
both in terms of computation time and information to be analyzed.

Novelty Search Randomized

Search Technique

0

20

40

60

80

100

120

140

160

180

N
o
v
e
lt

y
 D

is
ta

n
ce

Fig. 6. Novelty distance comparison between novelty and random search.

Figure 7 presents two separate RDM network execution paths that were gen-
erated by novelty search, with each represented as a WCG. Each node represents
a unique logging point and each directed edge represents a sequential execution
from one node to the next. The weight on each edge indicates the frequency that
the statement was executed. For instance, in Figure 7(a), the weight on the edge
between Nodes (g) and (h) shows that Node (g) was executed 28 times and then
Node (h) was executed once. Further analysis of the execution trace indicates
that the RDM network consisted of 28 data mirrors. Visual inspection of Fig-
ures 7(a) and 7(b) indicates that Fenrir is able to find execution paths that vary
greatly in both structure and in frequency of executed instructions. The large
variance in structure helps us to better understand the complexity of the DAS
behavior in response to different operational contexts. Furthermore, the diver-
sity of execution traces can be used to focus our efforts in revising the functional
and/or adaptive logic in order to reduce complexity, optimize configurations, or
repair erroneous behavior and code.

Threats to Validity. This research was a proof of concept study to deter-
mine the feasibility of using execution trace data for a DAS to determine what
evolutionary computation-generated system and system and environmental con-
ditions warrant dynamic adaptation. We applied our technique to a problem that

11

da g 1

b c 1e 1

i300h 1

z

 300

j300 1 k l 300

m b1 1620 300o p300n 300 q r300

 1

s

 300

 300 300

 300 300

 1

 28 300 8100

 300

 10200 8100 8100

 300

300

(a) Execution Path 1

da g
 1

b c
 1

e
 300

i
 300

h
 1

 34

 300 1

 300 300

(b) Execution Path 2

Fig. 7. Unique execution paths.

was provided by industrial collaborators. Threats to validity include whether this
technique will achieve similar results with other DAS implementations and other
problem domains. Furthermore, as an optimization to maintain trace files that
are manageable in size, we focused on coverage points rather than providing full
branching code coverage. As such, exploration of additional code coverage may
be necessary to provide extended information on the generated execution paths.

5 Related Work

This section presents related work on approaches for providing code coverage,
evolving randomized unit test data, automated methods for testing distributed
systems, and automatically exploring how uncertainty affects requirements.

Code Coverage. Assurance of a system can be augmented by providing a
measure of code coverage testing. Chen et al. [5] proposed code coverage as an
approach for enhancing the reliability measurements of software systems dur-
ing testing. A software system may successfully pass all test cases in a testing
suite and yet can still have latent errors. Augmenting traditional testing with
code coverage analysis can improve testing reliability. Furthermore, instrument-
ing software to provide code coverage can be a non-trivial task, incurring extra
time and overhead. Tikir and Hollingsworth [32] have introduced an approach
that can dynamically insert and remove logging calls in a codebase. Moreover,
optimizations to traditional logging techniques were introduced in order to re-
duce both the number of instrumentation points and program slowdown. Finally,
automated code coverage, as well as automated model coverage, can be provided
via gray-box testing [14]. Gray-box testing can be provided through a combina-
tion of white-box parameterized unit testing and black-box model-based testing.

12

In this approach, oracle-verified test sequences are combined with a suite of pa-
rameter values to maximize code coverage, and provides insights into system
behaviors at both the model and code levels. Each of these approaches is con-
cerned with providing an overall measure of code coverage, where Fenrir targets
code segments that provide differing paths of execution in the DAS, including
branching and self-reconfiguration paths, thereby providing a finer-grained mea-
sure of execution.

Evolved Randomized Unit Testing. A diverse set of system tests can
be created automatically with evolutionary computation. Nighthawk [2] uses a
genetic algorithm to explore the space of parameters that control the genera-
tion of randomized unit tests with respect to fitness values provided by coverage
and method invocation metrics. EvoSuite [9] uses evolutionary algorithms to
create whole test suites that focus on a single coverage criterion (i.e., introduc-
ing artificial defects into a program). In contrast to each of these approaches,
Fenrir instead provides feedback through execution traces to demonstrate the
vast amount of possible states that a DAS may encounter at run time, as opposed
to defining test suites for validation.

Automated Testing of Distributed Systems. Distributed systems com-
prise asynchronous processes that can also send and receive data asynchronously,
and as a result can contain a large number of possible execution paths. Sen and
Agha [30] have proposed the use of concolic execution, or simultaneous concrete
and symbolic execution, in order to determine a partial order of events incurred
in an execution path. Concolic execution was proven to efficiently and exhaus-
tively explore unique execution paths in a distributed system. Furthermore, au-
tomated fault injection can explore and evaluate fault tolerance to ensure that a
distributed system continually satisfies its requirements specification [8] and en-
sures system dependability [29]. Conversely, Fenrir explores how a system can
handle faults by studying its reaction to varying operational contexts, rather
than by direct injection of faults into the system.

Automatically Exploring Uncertainty in Requirements. Ramirez et
al. [26] introduced Loki, an approach for creating novel system and environmen-
tal conditions that can affect DAS behavior, and in doing so uncover unexpected
or latent errors within a DAS’s requirements specification. Fenrir extends Loki
by exploring uncertainty at the code level in an effort to distinguish how a DAS
will react in uncertain situations and attempt to uncover errors made in the
implementation of a DAS.

6 Conclusion

In this paper we presented Fenrir, an approach that applies novelty search
at design time to automatically generate operational contexts that can affect a
DAS during execution at the code level. Specifically, Fenrir introduces logging
statements to trace a DAS’s execution path and then uses the distance between
execution paths to measure the level of novelty between operational contexts. By
creating a set of configurations that more extensively exercise a DAS, it is pos-

13

sible to identify undesirable behaviors or inconsistencies between requirements
and system implementation. We demonstrated the use of Fenrir on an RDM
network that was responsible for replicating data across a network. This network
was subjected to uncertainty in the form of random link failures and dropped
or delayed messages. Experimental results from this case study established that
Fenrir was able to successfully generate more unique execution paths with a
smaller set of execution traces than purely random search. Future directions for
Fenrir will extend the technique and apply it to additional applications. We
are investigating different distance metrics for novelty search as well as other
evolutionary strategies to generate unique execution traces.

Acknowledgements

We gratefully acknowledge conceptual and implementation contributions from
Jared M. Moore.

This work has been supported in part by NSF grants CCF-0854931, CCF-
0750787, CCF-0820220, DBI-0939454, Army Research Office grant W911NF-08-
1-0495, and Ford Motor Company. Any opinions, findings, and conclusions or
recommendations expressed in this material are those of the author(s) and do
not necessarily reflect the views of the National Science Foundation, Army, Ford,
or other research sponsors.

References

1. Shin-Young Ahn, Sungwon Kang, Jongmoon Baik, and Ho-Jin Choi. A weighted
call graph approach for finding relevant components in source code. In Software En-
gineering, Artificial Intelligences, Networking and Parallel/Distributed Computing,
2009. SNPD ’09. 10th ACIS International Conference on, pages 539–544, 2009.

2. James H. Andrews, Tim Menzies, and Felix C.H. Li. Genetic algorithms for ran-
domized unit testing. IEEE Transactions on Software Engineering, 37(1):80–94,
January 2011.

3. Paul E. Black. Dictionary of Algorithms and Data Structures. U.S. National
Institute of Standards and Technology, May 2006.

4. J. Camara and R. de Lemos. Evaluation of resilience in self-adaptive systems
using probabilistic model-checking. In Software Engineering for Adaptive and Self-
Managing Systems., pages 53–62, June 2012.

5. M-H Chen, Michael R Lyu, and W Eric Wong. Effect of code coverage on software
reliability measurement. IEEE Transactions on Reliability, 50(2):165–170, 2001.

6. Betty H. C. Cheng, Pete Sawyer, Nelly Bencomo, and Jon Whittle. A goal-based
modeling approach to develop requirements of an adaptive system with environ-
mental uncertainty. In ACM/IEEE International Conference on Model Driven
Engineering Languages and Systems (MODELS’09), Lecture Notes in Computer
Science, pages 468–483, Denver, Colorado, USA, October 2009. Springer-Verlag.

7. Betty HC Cheng, Rogerio De Lemos, Holger Giese, Paola Inverardi, Jeff Magee,
Jesper Andersson, Basil Becker, Nelly Bencomo, Yuriy Brun, Bojan Cukic, et al.
Software engineering for self-adaptive systems: A research roadmap. Springer, 2009.

14

8. Scott Dawson, Farnam Jahanian, Todd Mitton, and Teck-Lee Tung. Testing of
fault-tolerant and real-time distributed systems via protocol fault injection. In
Proceedings of Annual Symposium on Fault Tolerant Computing, pages 404–414.
IEEE, 1996.

9. Gordon Fraser and Andrea Arcuri. Evosuite: automatic test suite generation
for object-oriented software. In Proceedings of the 19th ACM SIGSOFT sym-
posium and the 13th European conference on Foundations of software engineering,
ESEC/FSE ’11, pages 416–419, Szeged, Hungary, 2011. ACM.

10. R. Gupta, A.P. Mathur, and M.L. Soffa. Generating test data for branch coverage.
In Proceedings of the 15th IEEE International Conference on Automated Software
Engineering (ASE 2000), pages 219–227, 2000.

11. John H. Holland. Adaptation in Natural and Artificial Systems. MIT Press, Cam-
bridge, MA, USA, 1992.

12. Minwen Ji, Alistair Veitch, and John Wilkes. Seneca: Remote mirroring done
write. In USENIX 2003 Annual Technical Conference, pages 253–268, Berkeley,
CA, USA, June 2003. USENIX Association.

13. Kimberly Keeton, Cipriano Santos, Dirk Beyer, Jeffrey Chase, and John Wilkes.
Designing for disasters. In Proceedings of the 3rd USENIX Conference on File and
Storage Technologies, pages 59–62, Berkeley, CA, USA, 2004. USENIX Association.

14. Nicolas Kicillof, Wolfgang Grieskamp, Nikolai Tillmann, and Victor Braberman.
Achieving both model and code coverage with automated gray-box testing. In Pro-
ceedings of the 3rd International Workshop on Advances in Model-Based Testing,
pages 1–11. ACM, 2007.

15. M. Lajolo, L. Lavagno, and M. Rebaudengo. Automatic test bench generation for
simulation-based validation. In Proceedings of the Eighth International Workshop
on Hardware/Software Codesign, pages 136–140, San Diego, California, United
States, 2000. ACM.

16. Yves Ledru, Alexandre Petrenko, and Sergiy Boroday. Using string distances for
test case prioritisation. In Proceedings of the 2009 IEEE/ACM International Con-
ference on Automated Software Engineering, ASE’09, pages 510–514, Auckland,
New Zealand, November 2009. IEEE Computer Society.

17. Joel Lehman and Kenneth O. Stanley. Exploiting open-endedness to solve prob-
lems through the search for novelty. In Proceedings of the Eleventh International
Conference on Artificial Life (ALIFE XI), Cambridge, MA, USA, 2008. MIT Press.

18. P.K. McKinley, S.M. Sadjadi, E.P. Kasten, and B. H. C. Cheng. Composing adap-
tive software. Computer, 37(7):56 – 64, July 2004.

19. J Moc and David A Carr. Understanding distributed systems via execution trace
data. In Proceedings of the 9th International Workshop on Program Comprehension
(IWPC 2001), pages 60–67. IEEE, 2001.

20. Cu D. Nguyen, Anna Perini, Paolo Tonella, and Fondazione Bruno Kessler. Tonella
p., automated continuous testing of multiagent systems. In Fifth European Work-
shop on Multi-Agent Systems (EUMAS), 2007.

21. Cu D. Nguyen, Anna Perini, Paolo Tonella, Simon Miles, Mark Harman, and
Michael Luck. Evolutionary testing of autonomous software agents. In Proceed-
ings of the Eighth International Conference on Autonomous Agents and Multiagent
Systems, pages 521–528, Budapest, Hungary, May 2009. International Foundation
for Autonomous Agents and Multiagent Systems.

22. Duy Cu Nguyen, Anna Perini, and Paolo Tonella. A goal-oriented software testing
methodology. In Proceedings of the 8th International Conference on Agent-oriented
software engineering VIII, pages 58–72, Berlin, Heidelberg, 2008. Springer-Verlag.

15

23. Alex Ramı́rez, Josep-L Larriba-Pey, Carlos Navarro, Josep Torrellas, and Mateo
Valero. Software trace cache. In Proceedings of the 13th International Conference
on Supercomputing, pages 119–126. ACM, 1999.

24. Andres J. Ramirez and Betty H.C. Cheng. Verifying and analyzing adaptive logic
through uml state models. In Proceedings of the 2008 IEEE International Confer-
ence on Software Testing, Verification, and Validation, pages 529–532, Lilleham-
mer, Norway, April 2008.

25. Andres J. Ramirez, Erik M. Fredericks, Adam C. Jensen, and Betty H. C. Cheng.
Automatically relaxing a goal model to cope with uncertainty. In Gordon Fraser
and Jerffeson Teixeira de Souza, editors, Search Based Software Engineering, vol-
ume 7515 of Lecture Notes in Computer Science, pages 198–212. Springer Berlin
Heidelberg, 2012.

26. Andres J. Ramirez, Adam C. Jensen, Betty H.C. Cheng, and David B. Knoester.
Automatically exploring how uncertainty impacts behavior of dynamically adap-
tive systems. In Proceedings of the 2011 International Conference on Automatic
Software Engineering, ASE’11, Lawrence, Kansas, USA, November 2011.

27. B.G. Ryder. Constructing the call graph of a program. Software Engineering,
IEEE Transactions on, SE-5(3):216–226, 1979.

28. Pete Sawyer, Nelly Bencomo, Emmanuel Letier, and Anthony Finkelstein.
Requirements-aware systems: A research agenda for re self-adaptive systems. In
Proceedings of the 18th IEEE International Requirements Engineering Conference,
pages 95–103, Sydney, Australia, September 2010.

29. Z Segall, D Vrsalovic, D Siewiorek, D Yaskin, J Kownacki, J Barton, R Dancey,
A Robinson, and T Lin. Fiat-fault injection based automated testing environment.
In Fault-Tolerant Computing, 1988. FTCS-18, Digest of Papers., Eighteenth Inter-
national Symposium on, pages 102–107. IEEE, 1988.

30. Koushik Sen and Gul Agha. Automated systematic testing of open distributed
programs. In Fundamental Approaches to Software Engineering, pages 339–356.
Springer, 2006.

31. D.T. Stott, B. Floering, D. Burke, Z. Kalbarczpk, and R.K. Iyer. Nftape: a frame-
work for assessing dependability in distributed systems with lightweight fault in-
jectors. In Computer Performance and Dependability Symposium, pages 91 –100,
2000.

32. Mustafa M Tikir and Jeffrey K Hollingsworth. Efficient instrumentation for code
coverage testing. In ACM SIGSOFT Software Engineering Notes, volume 27, pages
86–96. ACM, 2002.

33. Jon Whittle, Pete Sawyer, Nelly Bencomo, Betty H.C. Cheng, and Jean-Michel
Bruel. RELAX: Incorporating uncertainty into the specification of self-adaptive
systems. In Proceedings of the 17th International Requirements Engineering Con-
ference (RE ’09), pages 79–88, Atlanta, Georgia, USA, September 2009.

34. Ding Yuan, Soyeon Park, and Yuanyuan Zhou. Characterizing logging practices in
open-source software. In Proceedings of the 2012 International Conference on Soft-
ware Engineering, ICSE 2012, pages 102–112, Piscataway, NJ, USA, 2012. IEEE
Press.

35. Ji Zhang and Betty H. C. Cheng. Model-based development of dynamically adap-
tive software. In Proceedings of the 28th International Conference on Software
engineering, ICSE ’06, pages 371–380, Shanghai, China, 2006. ACM.

