Towards Run-Time Adaptation of Test Cases for
Self-Adaptive Systems in the Face of Uncertainty

Erik M. Fredericks
freder99@cse.msu.edu

Byron DeVries
devril17@cse.msu.edu

Betty H. C. Cheng
chengb@cse.msu.edu

Department of Computer Science and Engineering
Michigan State University
East Lansing, MI, 48823, USA

ABSTRACT

Self-adaptive systems (SAS) may be subjected to condi-
tions for which they were not explicitly designed. For those
high-assurance SAS applications that must deliver critical
services, techniques are needed to ensure that only accept-
able behavior is provided. While testing an SAS at design
time can validate its expected behaviors in known circum-
stances, testing at run time provides assurance that the SAS
will continue to behave as expected in uncertain situations.
This paper introduces Veritas, an approach for using utility
functions to guide the test adaptation process as part of a
run-time testing framework. Specifically, Veritas adapts test
cases for an SAS at run time to ensure that the SAS contin-
ues to execute in a safe and correct manner when adapting
to handle changing environmental conditions.

Categories and Subject Descriptors

D.2.1 [Software Engineering]: Requirements / Specifi-
cations—tools; D.2.4 [Software Engineering]: Software /

Program Verification—reliability, validation; D.2.5 [Software

Engineering]: Testing and Debugging—testing tools

General Terms

Measurement, performance, reliability, verification

Keywords

Search-based software engineering, software assurance, evo-
lutionary algorithms, software testing

1. INTRODUCTION

In order to handle unanticipated changing system and
environmental conditions [7], a self-adaptive system (SAS)

Permission to make digital or hard copies of all or part of this work for per-
sonal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than the author(s) must be honored. Abstract-
ing with credit is permitted. To copy otherwise, or republish, to post on
servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions @acm.org.

SEAMS 14, June 2-3, 2014, Hyderabad, India

Copyright is held by the owner/author(s). Publication rights licensed to
ACM. ACM 978-1-4503-2864-7/14/05$15.00.
http://dx.doi.org/10.1145/2593929.2593937.

adapts at run time to new configurations [6, 19, 21]. Test-
ing the SAS throughout the different phases of software de-
sign and development provides assurance that the system
will execute as specified in the software design and require-
ments specifications. System and environmental conditions
may change throughout system execution beyond what was
known at design time, thereby potentially making previously
specified test cases irrelevant to the current operating con-
text. System and environmental uncertainty manifests itself
further in partially informed decisions and assumptions re-
garding the SAS’s requirements, as the execution environ-
ment may not have been fully understood during require-
ments elicitation and system development [34]. Further-
more, the reconfiguration capabilities of an SAS can cause
previously derived test cases to no longer be applicable to
the current execution environment. This paper presents Ver-
itas, a run-time evolutionary approach for adapting an online
testing framework for an SAS to ensure at run time that the
test cases are relevant to the current operating conditions.

Typically, it is difficult to anticipate all possible operating
conditions that an SAS may face throughout execution [6,
7, 21]. Existing design-time [5, 12, 25, 27] and run-time [15,
16, 25, 26] techniques have been developed for testing an
SAS. These techniques are typically restricted to evaluat-
ing requirements satisfaction given specific operational con-
texts comprising system and environmental configurations
and may not consider unanticipated changes within the sys-
tem or environment. Search-based heuristics, including evo-
lutionary algorithms, have been previously used for gener-
ating test cases and test suites [1, 13, 20]. However, tech-
niques are needed to ensure that an SAS continually delivers
acceptable behavior throughout execution even as its oper-
ating context changes.

This paper introduces Veritas,® an approach that uses evo-
lutionary computation to adapt requirements-based test cases
at run time to handle different system and environmental
conditions. Veritas monitors its environment for evidence of
change and then automatically adapts individual test cases
as necessary to ensure testing relevance, while protecting
against adapting test cases to automatically pass under in-
valid conditions. Test adaptation can be triggered by sig-
nificant environmental changes, system reconfiguration, or
invalid test cases.

Veritas uses utility functions [33] that measure how well
high-level system goals are being satisfied to assess relevance

In Roman mythology, Veritas was known as the goddess of
truth.

of test cases. While utility functions can quantify high-level
intent of a system (e.g., maintain a safe distance between
vehicles), test cases can provide finer-grained assessments
as to whether individual features and functions are behav-
ing properly (e.g., radar is detecting obstacles within a spe-
cific range). Veritas also provides regression analysis [28, 35],
where existing test cases are re-evaluated in the event of
operational context change (e.g., significant environmental
conditions change and/or SAS reconfiguration). By corre-
lating utility values with test cases, Veritas can identify test
cases that are valid and/or invalid at run time, and if in-
valid, can provide a frame of reference for adapting the test
case parameters to be realigned with the current operational
context. Once Veritas determines that a test case requires
adaptation, an online evolutionary algorithm is executed to
facilitate run-time adaptation of test case parameters.

We demonstrate Veritas by applying it to an intelligent
robotic vacuum that is tasked with safely and efficiently
cleaning a given environment. Experimental results indi-
cate that Veritas can significantly reduce the amount of test
case failures due to the mismatch between test cases and op-
erational context caused by uncertainty within the system
and environment. The remainder of this paper is organized
as follows. Section 2 provides background information on
the smart vacuum system (SVS) application, goal modeling,
genetic algorithms, and software testing. Section 3 describes
the Veritas approach with the SVS as its motivating example.
Next, Section 4 presents our experimental results. Follow-
ing, Section 5 overviews related work. Finally, Section 6
discusses our findings and presents future directions.

2. BACKGROUND

This section presents background material on SVSs, goal-
oriented requirements modeling, genetic algorithms, and soft-
ware testing.

2.1 Smart Vacuum Systems

SVSs, most notably the iRobot Roomba,? are currently
available in the consumer market. An SVS cleans a desired
area by monitoring sensor data to balance path planning,
power conservation, and safety concerns. Sensors may in-
clude bumper sensors, cliff sensors, motor sensors, and ob-
ject sensors. Bumper sensors indicate when the robot has
collided with an object, cliff sensors detect empty space and
prevent the robot from falling down stairs, motor sensors
provide feedback on individual velocities and power modes
for the wheels and suction units, and object sensors can be
used to detect and identify objects near the robot. A con-
troller analyzes the incoming sensor data to ensure that the
proper path, power saving mode, and failsafe modes are se-
lected as necessary.

An SVS can be modeled as an adaptive system [2], and as
such, can self-reconfigure at run time by dynamically per-
forming mode changes [24]. Mode changes enable the SVS to
mitigate uncertainty by selecting an optimal configuration.
Uncertainties can include unexpected power drain, distri-
bution of dirt within the room, and unexpected obstacles.
Mode changes to mitigate these uncertainties can include
reduced power consumption modes, different pathfinding al-
gorithms, and obstacle avoidance measures.

2See http://www.irobot.com/

2.2 Goal-Oriented Requirements Modeling

Goal-oriented requirements engineering (GORE) graphi-
cally captures high-level objectives and constraints that a
system must satisfy, and can be used to guide the elicitation
and analysis of requirements, incorporating assumptions and
expectations of the executing environment. Furthermore, a
functional goal declares a service that the system-to-be must
provide to its stakeholders, a non-functional goal imposes a
quality constraint or criterion upon the delivery of those ser-
vices, a safety goal declares a critical safety objective that
mitigates dangerous situations and must always be satis-
fied, and a failsafe goal specifies a goal that provides a safe
fallback in case of system failure. Functional goals can be
classified as invariant (denoted by the keyword “Maintain”),
requiring that they are always satisfied by the system, or
non-invariant (denoted by the keyword “Achieve”), indicat-
ing that they may be temporarily unsatisfied at run time.
Safety and failsafe goals may also be designated as either
functional or non-functional. Moreover, goals can be sat-
isficed, or satisfied to a certain degree, possibly based on
subjective preference [8].

The GORE process gradually decomposes high-level goals
into finer-grained subgoals [31] using a directed acyclic graph,
where each node represents a goal and an edge represents the
corresponding goal refinement. KAOS [31] provides a frame-
work for systematically performing goal refinement via AND
or OR refinements. An AND-refined goal is satisfied only if
all its subgoals have also been satisfied. OR-refined goals
are satisfied if at least one subgoal has also been satisfied.
The refinement process continues until each leaf-level goal
has been assigned to an agent that is responsible for that
goal’s satisfaction, and is then considered a requirement.

The KAOS goal model in Figure 1 captures the functional
requirements of the SVS application. The SVS must (A) suc-
cessfully clean at least 50% of the dirt within the room. To
accomplish this task, the SVS must (B) operate efficiently to
conserve battery power (F) while providing movement (E)
and suction (G). The SVS can then operate in either nor-
mal power modes for speed (L) and suction (N) or reduced
power modes for speed (K) and suction (M) to conserve bat-
tery power (F). Furthermore, the SVS must also (C) clean
the room effectively by either selecting a 10 second (H) ran-
dom (O) or straight (P) path, or 20 second (I) spiral (Q)
path plan until the simulation completes. The SVS must
also consider safety (D) as a high-level system goal. More-
over, if a safety violation occurs then the SVS must activate
(J) a failsafe mode, with safety violations comprising a col-
lision with specific obstacles (R) (such as pets or children)
and avoiding liquid spills, cliffs, and objects that would oth-
erwise damage the SVS itself (S). Goal (A) demonstrates an
AND-decomposition where the room can only be success-
fully cleaned if the battery retains enough power (B), the
desired area has been covered via path planning (C), and
no safety concerns have been violated (D). Conversely, Goal
(H) provides an example of an OR-refinement in that an
area can be cleaned for 10 seconds if the SVS follows either
a RANDOM path (O) or follows a STRAIGHT path (P).

2.3 MAPE-T Feedback Loop

The MAPE-T feedback loop [14] is a run-time testing
loop that assists an SAS in continually satisfying its require-
ments. Similar to the MAPE-K feedback loop that governs
proper SAS design and execution [19], MAPE-T provides a

A)

(
Achieve [Cleaning
O e @
o

Maintain
[Suction]

)

Achieve

) Achieve [BatteryPower
[Movement]

>5%]

(E (9]

/

Achieve [Cleaning
Effectiveness]

Achieve [50%
Clean]

Maintain

n FailSafeEnabled If
SafetyCheckFailure,

Achieve [Reduced
Speed]

Achieve [Normal
Suction]

Achieve [Normal
Speed]

//
I

of]

M/Achieve [Reduced

Suction] /(N)/

Avoid [Self
Damage]

Avoid
/

Battery
Sensor

i

Cliff

o Internal
w Sensor,

o Suction w
Sensor

w Sensor

o

o Object
wSensor

(H) Achieve [Path PI

for 10 Seconds]

an) Achieve [Clean Area

for 20 seconds]

e

N

v

(O)/Achiev:aiilandom/(”/

Achieve [Straight/(Q/Achieve [Spira

|
Path] Path] /

D —a

o Bumper
W Sensors

Figure 1: KAOS goal model of the SVS application.

framework for Monitoring, Analyzing, Planning, and Fxe-
cuting run-time test adaptation. Monitoring is facilitated
by observing key elements in the system and environmental
configurations and providing relevant testing information to
the SAS in case of contextual change. Analyzing consumes
the current operational context and selects a proper subset
of test cases from an existing test specification. Planning
determines the proper time during execution as to when the
test plan will be evaluated during SAS execution. Finally,
Executing runs the test cases alongside the SAS and analyzes
the results. Furthermore, Fxecuting adapts the test cases as
necessary to ensure that they are applicable and/or relevant
to their current environment, while maintaining overall test
specification validity. Veritas is one approach for realizing
the MAPE-T feedback loop.

2.4 Genetic Algorithms

A genetic algorithm [18] is a stochastic, search-based ap-
proach used to efficiently solve complex optimization prob-
lems. Candidate solutions are represented as a set of individ-
uals within a population, and a fitness function evaluates the
performance of each individual, thereby guiding the search
process towards promising areas within the available solu-
tion space. New individuals are generated with evolutionary
operators such as crossover and mutation. Crossover com-
bines portions of existing individuals to form new individu-
als that, ideally, attain higher fitness values. Mutation ran-
domly modifies an individual to maintain diversity within
the population. The evolution process continues until the
maximum number of specified generations is completed.

(141)-ONLINE Evolutionary Algorithm. The (1+1)-
ONLINE Evolutionary Algorithm (EA) [4], based on prior
work in evolutionary strategies [9, 29|, facilitates run-time

evolution by adapting genomes in a low-impact manner dur-
ing program execution. Generally, EAs must run offline due
to the large amount of time required for a full evolutionary
run. The (1+1)-ONLINE EA sacrifices searching power for ex-
ecution speed. Within the (1+1)-ONLINE EA, there is only
a single parent individual and single child individual in the
population, with the creation of the child accomplished by
mutating the parent. A mutation value o provides local or
global search of the solution space depending on stagnation
of the fitness value, where stagnation is defined as a minor
or no change to the fitness value, indicating a local optima
within the search space. Each individual is provided a set
amount of time for evaluation during execution. The in-
dividual with the higher fitness is allowed to survive, and
the individual with the lower fitness value is discarded. A
new child is then created from the current parent individual,
and the process repeats throughout execution. Given that
mutation is driving the evolutionary process with a small
population size, the ability to exhaustively search all areas
within the solution space is limited, however (1+1)-ONLINE
EA is instead able to provide lightweight evolutionary search
during execution.

2.5 Software Testing

Software testing provides assurance that a system is oper-
ating according to its requirements specification, which can
be accomplished with a number of different strategies [3,
17], including structural, functional, and regression testing.
Structural testing comprises coverage metrics such as branch
and data flow coverage. Functional testing validates a sys-
tem by testing against a specification. Finally, regression
testing validates a system using an existing test specifica-
tion following a major change that would necessitate retest-

ing, such as a new software release or a change in operating
context [28, 35]. This paper adapts functional test cases
and moreover uses regression testing to validate test case
execution following system and/or environmental changes.

3. APPROACH

Veritas is an online assurance technique for adapting test
cases at run time in response to changing system and envi-
ronmental conditions. For discussion purposes, we define a
test specification to be a collection of all possible test cases
relevant to the SAS, and a test plan to be a subset of test
cases from the test specification that may be adapted and
executed at run time. Veritas monitors the operating context
for evidence of change, and then determines which test cases
are relevant to current conditions. Next, Veritas executes the
test plan and analyzes the results to determine if each ex-
ecuted test case is valid and if adaptations are necessary.
Finally, if adaptation is required, then Veritas executes the
(14+1)-ONLINE EA to generate a set of new test cases. In this
section, the inputs, assumptions, and expected outputs are
described. Then, the Veritas approach is presented with each
of its key elements described in turn.

3.1 Inputs, Assumptions, and Expected Out-
puts

Veritas requires five elements as input: a goal model of the
system, a set of utility functions for high-level requirements
monitoring [33], an executable specification or prototype of
the SAS, a set of monitoring elements, and a test speci-
fication comprising all possible test cases. Each of these
elements is next described in detail.

Inputs and Assumptions. First, the system goal model
is needed to capture the high-level functionality of the SAS
(Figure 1 depicts the SVS goal model). The goal model is
assumed to represent the intent specified within the software
requirements.

Next, utility functions must be derived from the goal model
to quantify each goal’s performance throughout the SAS ex-
ecution. An example of a utility function that measures
the satisfaction of power conservation with respect to SVS
movement (Goal (F)) is presented as follows in Equations 1
and 2:

utilitycoa.r = BatteryDecay, (1)
where
1.00 if BatteryCharge >= 75%,
0.75 if BatteryCharge >= 50%,
BatteryDecay = (2)

0.50 if BatteryCharge >= 25%,
0.25 else.

The returned values are then used to determine if an SAS
self-reconfiguration is necessary. For example, the above
equations reveal the current state of the battery. If the re-
maining charge falls below a specified percentage, for in-
stance 50%, then the SVS self-reconfigures to reduce power
to the wheel motors, effectively conserving battery power
while still achieving motion to satisfy upper-level goals (A)
and (B). Furthermore, Veritas uses the utility values for run-
time validation of its test results. Continuing with our prior
example, a test case that monitors the current power mode
of the SVS would be considered valid if the utility value
(utilitygoqr_g) is violated and the test case determines that

the SVS has not successfully entered a reduced power mode
(this result implies that there is a problem with the self-
reconfiguration capabilities of the SVS). For the purposes of
this paper, the utility functions are assumed to have been
derived correctly and, moreover, provide an accurate quan-
tification of system behavior throughout execution in all pro-
vided environments.

An executable specification of the SAS that captures the
system and environmental contexts must be provided. The
executable specification is responsible for executing the SAS
behavior in a simulation environment that can generate all
possible operating contexts that the SAS may encounter.

A requirements engineer specifies a set of elements to
properly monitor and quantify operating conditions. First,
the ENV element describes a specific object or behavior to
be analyzed. Second, MON specifies the variable that moni-
tors the ENV element. Lastly, REL describes the relationship
between ENV and MON. For example, in power conservation
mode, the SVS can reduce power to its wheels (ENV). To
accomplish this task, the SVS queries the wheel motor sen-
sors (MON) to determine the current amount of torque being
applied to the wheels. Upon entering power conservation
mode, the SVS then commands the wheel motors to reduce
the applied torque (REL), effectively reducing the power con-
sumption by the wheel motors and extending the time that
the SVS can operate before running out of battery power.?

A test specification must also be provided for Veritas to an-
alyze. The test specification includes test cases that provide
full coverage of a requirements specification, as Veritas can
only perform testing at run time by selectively executing test
cases and mutating test case parameters, and is not intended
to dynamically add or remove test cases during execution.
Furthermore, each test case must be specified as invariant or
non-invariant. Invariant test cases are precluded from adap-
tation, and are generally associated with critical testing such
as safety or failsafe concerns. Non-invariant test cases relate
to functional requirements and behaviors, and as such are
reconfigurable at run time. For run-time validation, each
test case must also be associated with one or more of the
previously derived utility values for the goal model. Exam-
ple SVS test cases can be found in Table 1. For instance,
Test Case 3 ensures that the SVS’s object sensor (MON)
can detect large dirt particles (ENV) within a radius of 0.5m
(REL). Therefore, the expected value of an internal variable
(i.e., ObjectSensor.Detect Radius) must equal 0.5m. If this
test case fails, then adaptation may be warranted, as oper-
ating conditions may have changed such that the SVS can
no longer detect objects within the specified radius. As Test
Case 4 is defined to be non-invariant, adaptation is allowed.
The expected value can be mutated within a pre-defined tol-
erable range of [0.25m, 0.75m|. Furthermore, satisfaction of
this particular test case contributes to satisfying testing of
Goals D and R.

Expected Outputs. Upon completion of the simulation,
Veritas outputs a set of tuples comprising the environmen-
tal configuration, system configuration, and test specification
configuration, as well an adaptation trace. The tuple pro-
vides a snapshot of the overall SAS state at each point of
test execution and test adaptation. This information can be
analyzed offline by an SAS engineer or test engineer to gain
insights into the types of system and environmental config-

3For this paper, we consider the REL element to be the ez-
pected value for each test case.

Table 1: Examples of SVS test cases.

ensure that failsafe | Controller
mode was enabled
and all power was

Test Case (ENV) [Agent (MON) |Expected Value (REL) Type Acceptable Goal Con-
Value straint
1| Test suction tank | InternalSensor |InternalSensor.NoLargeObjects = |Invariant TRUFE uttlitYyGoal D
for large objects TRUE ulilityGoal_g
2 [If SVS falls off cliff, | InternalSensor, | Controller.FailSafeActive =T RU E | Invariant TRUE uttlityGoal D

uttlitycoal g

following the RAN-
DOM path plan

disabled

3| Verify large dirt | ObjectSensor ObjectSensor.Detect Radius = 0.5m | Non-invariant | [0.25m,0.75m] [utilityGoai D,
particle detection utilityGoal R
within 0.5m

4| Ensure that a | InternalSensor, | InternalSensor.TurnAngle € | Non-invariant | [—(7/2.0) rad, |utilityGoar_o
random an- | Controller [0.0 rad, (7/2.0) rad] ™ rad)
gle on [0.0 rad,
(7/2.0) rad] was
selected while

urations the SAS is experiencing. Furthermore, the adap-
tation path provides information regarding the contextual
changes that triggered execution of the test specification,
the test results, and the adaptation path for each affected
test case.

3.2 Veritas Process

The data flow diagram (DFD) in Figure 2 provides an
overview of the Veritas process as it executes in parallel to
the SAS. Each step is next described in detail.

Run Time utility . .
———F
Execution functions Utility Functions

utility
values

(1) Monitor
Operational
Context

selected
test cases

context configuration,
test specification

(2) Select
Test Cases

(3) Execute
Test Plan

test plan
results

adapted
test plan

test
specification

Test Specification

(5) Update
Test
Specification

(4) Run 1+1-
ONLINE EA

optimized
test plan

Y

updated test
specification

Figure 2: DFD diagram of Veritas process.

(1) Monitor Operational Context. Veritas first moni-
tors the operational context for evidence of change. Monitor-
ing can be accomplished by passively monitoring the utility
values (e.g., the SVS’s battery power has fallen below 5%
and therefore Goal (F) is violated) and actively monitoring
the environment via instrumented code (e.g., monitoring the
object sensor to detect obstacles such as pets or children).

(2) Select Test Cases. Once a contextual change has
been detected, Veritas then analyzes the current configura-
tion of the system and environment to determine if an adap-
tation of the current test plan is necessary. Veritas selects
a set of appropriate test cases based on parameters from
the current operating context, such as system mode and ob-
served features within the environment. A test case is appli-
cable if it can be measured within the current context. For
instance, testing that the SVS has successfully completed

the SPIRAL path plan is invalid if the SVS is currently
executing the STRAIGHT path plan. Following test case
selection, Veritas then generates a test plan comprising all
selected test cases.

(3) Execute Test Plan. Veritas then executes the test
plan and returns a measured fitness subfunction value and
test result for each test case. While test cases typically re-
turn a boolean pass or fail, providing a fitness value instead
yields an extra metric for comparison of test case useful-
ness. A specific fitness subfunction is defined for each test
case based on its type and designation as invariant or non-
invariant (see Table 2).

Table 2: Individual test case fitness subfunctions.

Test REL Fitness
type
Invariant| Exact if (valuemeaqsured == valu€cgpected)

Value then
fitnessmeasured = 1.0

else
fitnessmeasured = 0.0
Invariant| Range | if (valuemeqsured €
of [Ualuelow,boundaryy 'Ualuehigh,boundary})

Values | then
fitnessmeasured = 1.0

else
fitnessmeasured = 0.0
Non- Exact fitnessmeasured = 1.0 —
invariant| Value |valuemeqsured—valueerpectedl
[valueezpected]
Non- Range | if (valuemeasured €

invariant| of [Ualuelow,bounda'ryvvaluehigh,bounda’l'y})
Values | then
fitnessmeasured = 1.0
else
fitnessmeasured = 1.0 —
‘ U”‘l“emeasured_valueoptimal |

valueoptimal

Different types of fitness calculations are used based on the
type of variable measured by the test case. For those test
cases that are monitoring an exact value, the test’s measured
value (valuemeqsured) 18 compared to the expected value
(valueegpected). Variables defined as a range, conversely,
expect the measured value to fall within pre-determined
boundaries (i.e., [valu€iow boundary, ValUehigh boundary]). Fur-

thermore, if a range variable falls outside of those bound-
aries, then its optimal value (i.e., valueoptimar) is defined as
the nearest boundary to the measured value, as defined in
Equations 3 and 4.

dlow = |Ualuemeasured - valuelow,boundaryl

dhigh = |Ualuehigh,bounda'ry - valuemeasured|7 (3)
where

if (dlow < dhigh)7

valuenigh boundary €lse.

’Ualuelow,boundary

Ualueoptimu.l = { (4)

Furthermore, the test case fitness calculation also con-
siders the inclusion within the low and high boundaries as
an impetus for providing a fitness boost for the evolution-
ary process. A measured value (i.e., valuémeqsured) that
is not equal to the expected value (valu€egpected), but is
still within the specified range of acceptable values (i.e.,
[valueiow boundary, Valu€high boundary]) i rewarded for still
being considered a valid result. The aggregate fitness for
each test case is then calculated as a weighted sum compris-
ing the measured fitness subfunction and the aforementioned
fitness boost for validity, with weights aumeasured and Qyalid
defining the relative importance of each fitness subfunction.
Test case fitness is presented as follows in Equations 5 and
6.

fitnesstest,case = Qmeasured * fitnessmeasured +

Qyalid * ValidResult, (5)
where

1.0 if valuemeqsured 18 valid,

ValidResult = { (6)
0.0 else.

As invariant test cases cannot be adapted, they may only
pass or fail. This result is converted to a fitness value as
1.0 and 0.0, respectively. Non-invariant test cases must pro-
vide a measure of performance and represent their fitness
as the distance to an optimal value. For test cases desig-
nated as exact, the fitness is calculated as the normalized
distance between the measured value (valu€meqsured) and
the expected value (valu€cgpected). Test cases designated
as ranges define fitness as the normalized distance between
the measured value and the closest boundary value (either
valu€iow boundary OF ValU€high boundary)- LSt cases that are
not relevant to the operating context cannot be accurately
executed, and therefore have a fitness value of 0.0. Overall
fitness of the test specification is calculated as the average
fitness of all test cases relevant to the current operating con-
text. Furthermore, a test case may also be designated as
having passed or failed. For the purposes of this paper, a
test case is considered passed if it has a fitness of 0.75 or
greater, where 0.75 was selected as a baseline to trigger the
adaptation process more often during execution based on
observed test case fitness values.

(4) Run 1+1-ONLINE EA. Following execution of the
test plan, Veritas then runs the (1+1)-ONLINE EA on test cases
marked for adaptation. The (1+1)-ONLINE EA comprises a
population of two individuals: a parent and a child, where
the child is created by mutating the parent. The parent is
first evaluated and then placed into a parent archive follow-
ing completion of its evaluation period (e.g., a set amount
of time has expired), and then the child is evaluated in turn.
The individual with the higher fitness value is retained for

the next iteration. Veritas implements the (1+1)-ONLINE EA
by considering test cases to be individuals and evaluation
to be a single test case execution. The initial composition
of the parent archive is populated by the first evaluation of
each test case. A DFD of the (1+1)-ONLINE EA process as
used by Veritas is presented in Figure 3 and detailed in the
following subsections.

Test Specification

selected
test cases

updated test
specification

(5) Update
Test
Specification

(3) Execute
Test Plan

A

testresults,| [for all test

test plan ////’ (4) \\\\\ cases: optimal fitness]

-~ Run1+1-ONLINEEA > adaptedtestplan
// \\\
7/ N\
/ \
// N
// \\

/ \\

/ \
// A4 !

(4.1) Analyze
and Validate
Test Results

adapted test plan,
candidate test cases

(4.2) Adapt
Test Cases

child test
cases /

N parent /
\ testcases /
/
AN Parent Test Case v
N\ .
S Archive /7
~ e

[there exists test cases: non-optimal fitness]
adapted test plan

Figure 3: DFD diagram of 14+1-ONLINE EA.

(4.1) Analyze and Validate Test Results. Veritas
analyzes the non-invariant test results to determine if a test
case adaptation is warranted. Test cases that have passed
are analyzed based on their calculated fitness values. Failing
test cases are automatically marked for adaptation. Both
passing and failing test cases undergo validation. Validity of
a test case is determined by the relationship between a utility
function and a test case, with the following four possible
cases:

C1. Utility function is satisfied, and test case has passed
(i.e., SAS behaves as expected)

C2. Utility function is not satisfied, and test case has failed
(i-e., SAS requires reconfiguration)

C3. Utility function is satisfied, and test case has failed
(i.e., false negative, test case requires adaptation)

C4. Utility function is not satisfied, and test case has passed
(i.e., false positive, test case requires adaptation)

C1 and C2 indicate that the test case concurs with the
results of each associated utility value, indicating that the

test is valid. Moreover, C2 can indicate a problem with the
codebase, potentially requiring code adaptation. C3 and C4
imply that the test case requires adaptation. As the util-
ity value in C3 indicates that the system is performing as
it should, then a failing test case implies that the test case
is invalid and requires adaptation. Conversely, C4 also re-
quires adaptation as the test case has passed, and yet the
utility value is indicating that the system is operating incor-
rectly. This behavior implies that the test case is no longer
applicable to the operating context.

For instance, a test case that monitors the health of the
cliff sensors is considered valid if the corresponding utility
value(s) indicate that the SVS has not enabled its failsafe
mode (Goal (J)) and has not fallen down a set of stairs (Goal
(D)). However, if the same test case is passing (implying the
cliff sensors are fully functional) and yet the SVS has fallen
off a step (Goals (J) and (D) were violated), then the test
case is in disagreement with its utility functions and there-
fore considered invalid. Moreover, if the test case fails and
the utility value(s) indicate goal violation, then the test case
is in agreement with the utility value(s), and either an SAS
self-reconfiguration or sensor replacement is necessary. Test
cases that are invalid (i.e., disagree with their corresponding
utility functions) are marked for adaptation.

Next, the test case results from the child test case are eval-
uated against its parent. Prior fitness values for each test
case selected for adaptation are retrieved from the parent
test case archive for comparison. If the calculated fitness
determined in Step (3) is higher than the existing version in
the archive, then the child replaces the parent in the archive.
If the parent’s fitness was higher, then the child test case is
replaced by the parent in the current test plan. Furthermore,
each selected test case is annotated with information regard-
ing which test case (i.e., parent or child) has been chosen,
as this information will determine the amount of mutation
possible in Step 4.2. A test case that has been executed for
the first time (e.g., at the start of SAS execution) is copied
into the parent test case archive to be used as a baseline.
The resulting test case is then adapted as follows:

(4.2) Adapt Test Cases. Following the validity check,
Veritas now searches for a new subset of test cases to in-
clude in the test plan. First, a mutation value o is deter-
mined based upon performance of the test case relative to
its parent, as determined in Step 4.1. If the parent test case
performed better than its child, then o is set to search the
global search space in an effort to find a more representative
test case. Conversely, if the child performed better, then o
is set to explore the local search space relative to the child.
The boundary elements of each selected test case are then
mutated by o, and the REL value is randomly generated
within those bounds. Each value is required to stay within
the previously defined tolerance to ensure that safety or fail-
safe concerns are not violated by adaptation. All active test
cases that have been determined to require adaptation are
subjected to the adaptation procedure.

To illustrate the adaptation process, consider a camera
sensor that has a scratched lens. Initially the camera could
detect objects at 0.5m according to its design, however the
damage has reduced its ability to only sense objects at a dis-
tance of 0.3m. An associated test case states that the SVS
must use the camera sensor to detect objects within 0.5m as
is defined within its requirements, however the test engineer
has previously specified a safety tolerance (i.e., range of val-

ues with which Veritas can adapt test case parameters) that
states that as long as an object is detected within a range of
[0.25m, 0.75m], the SVS can continue to execute as normal.
Given that the new sensing distance of 0.3m is within the
tolerated range, a Veritas-adapted test case that expects a
sensing distance of 0.28m will be considered more fit than
the original distance of 0.5m, as it is considered both valid
and closer to the measured value.*

Following adaptation, Veritas updates the current test plan
with either the adapted, child test cases (for testing at the
next possible opportunity) or with the previously tested par-
ent test case (as long as the parent’s fitness was higher than
the child’s fitness). Test case fitness is considered optimal if
the current fitness has surpassed the parent’s fitness. If any
test case fitness is non-optimal, then the (1+1)-ONLINE EA is
restarted with test cases considered non-optimal. If all test
case fitnesses in the current test plan are optimal, then no
further test case adaptation is required until a new context
change is detected.

(5) Update Test Specification. Veritas next updates
the test specification with the current state of the test plan,
where the test specification comprises all defined test cases,
and the test plan comprises the set of applicable test cases to
the current operational context, with each test case having
either been adapted by Veritas or retrieved from the parent
test case archive. The updated test specification is again
used as a repository of possible test cases for run-time testing
the next time that Veritas is executed during SAS execution.

4. EXPERIMENTAL RESULTS

This section describes the experimental setup and dis-
cusses the results from applying Veritas to the SVS appli-
cation.

4.1 Experimental Setup

For this paper, we implemented the SVS application as a
completely autonomous robot that receives input from sen-
sors and responds accordingly. The SVS comprises a set
of bumper sensors to determine if a wall has been encoun-
tered, an object sensor to measure distance between objects
within the room and the robot, a cliff sensor to prevent the
robot from falling, an internal sensor that monitors the in-
ternal health of the robot, and wheel and suction sensors
that monitor the health of the wheels and suction unit, re-
spectively. Each sensor has a specified probability of failure,
and a probability of occlusion. Failure causes the sensor to
cease functioning, and occlusion causes the sensor to receive
partial or corrupted input. The SVS also has a controller
that responds to sensor input and self-reconfigures as neces-
sary. Example conditions that could cause a reconfiguration
are cliff detection, low power, or an activated failsafe mode.
Furthermore, the environment comprises four walls and a set
of objects that can be instantiated within the room. These
objects include dirt that can be safely vacuumed, large dirt
that cannot be safely vacuumed, a downward step that the
robot must avoid, collideable objects (e.g., walls or pillars)
that the robot may safely contact, and non-collideable ob-
jects (e.g., pets or children) that the robot must avoid.

4The occlusion of the sensor will still be noted by the utility
function as an issue that may require self-reconfiguration
or replacement for safety reasons as part of normal SAS
operation.

The test specification comprised 26 separate test cases,
10 of which tested safety cases, and 4 that tested failsafe
cases. The safety and failsafe test cases were considered
to be invariants, and therefore exempted from adaptation.
The remaining 12 cases tested system functionality and were
considered non-invariant and allowed for adaptation. The
fitness functions applied to each test case are presented in
Table 2. Furthermore, Veritas was configured to consider any
test result value below 0.75 to be a failure and therefore a
target for adaptation. The SVS simulation was executed
for 120 timesteps and required to vacuum at least 50% of
the available dirt within the room. Furthermore, the fitness
function weights measured and yaiia were set to 0.4 and
0.6 respectively to maximize the amount of test results that
measured valid results.

Environmental uncertainties, such as amount, location,
and distribution of dirt; instantiation of objects that can
damage the robot (e.g., liquid spills); and instantiation of
objects that the robot must navigate around (e.g., station-
ary pets) may be applied to the SVS at the start of the
simulation. Furthermore, cliffs, varying room sizes, and dif-
ferent floor frictions further contribute to the environmental
uncertainty that the SVS must mitigate. System uncertainty
manifested in the form of sensor failure or occlusion, each of
which may manifest at any given point during the simula-
tion. To simulate these uncertainties, 15 unique operational
contexts were generated by Loki [27], a novelty search-based
approach for generating unique system and environmental
configurations. The SVS was tested within each Loki en-
vironment sequentially to determine the impact of environ-
mental uncertainty on run-time testing.

In order to validate our approach, we compared and eval-
uated the resulting test cases generated by Veritas with a
set of manually-derived test cases (hereafter the “Control”)
that had no test case adaptations applied at run time. In
order to test all the mode changes that might occur at run
time, the Control comprises all of the test cases from the test
specification where test cases are configured to test the orig-
inal environmental conditions. For statistical purposes, we
conducted 50 trials of this experiment and, where applica-
ble, plotted or reported the mean values with corresponding
error bars or deviations.

4.2 Run-Time Testing

For this experiment, we define the null hypothesis Hp to
state that “there is no difference between Veritas test cases
and unoptimized test cases.” Furthermore, we define an al-
ternate hypothesis H; to state that “there is a difference
between Veritas test cases and unoptimized test cases.” Fig-
ure 4 presents boxplots of the mean fitness values observed
throughout each experiment for Veritas test cases and a Con-
trol that did not adapt test cases at run time. As this figure
demonstrates, Veritas test cases achieve statistically signifi-
cant higher fitness values than the static, unoptimized test
cases (Wilcoxon-Mann-Whitney U-test, p < 0.05).> More-
over, these results demonstrate that Veritas test cases adapt
to be more representative of their environment (Step 4.1,
C1), enabling us to reject our null hypothesis Hy that no
difference exists between the two sets of test cases.

SFor each reported result in this section, the Wilcoxon-
Mann-Whitney U-test was selected to measure statistical
significance, due to the non-normal distribution of each
dataset.

0.68+

0.64+

Fitness

0.604

0.56 1

Veritas Control

Figure 4: Comparison of fitness between Veritas and
Control.

Figure 5 presents the mean number of test case failures
experienced throughout the SVS simulation (i.e., moving
through several Loki-generated environments and system
reconfigurations to represent environment condition change
and system reconfiguration) between Veritas test cases and
the Control test cases. The utility functions for each failure
in this figure, however, were satisfied, implying that Veritas
can minimize the amount of false negatives (Step 4.1, C3)
at run time.

30000+

20000+

10000+

Mean Number of False Negatives

0- —_—

Veritas Control

Figure 5: Comparison between Veritas and Control
test cases.

As demonstrated by this plot, Veritas test cases fail signif-
icantly less than those that are unoptimized. Due to chang-

ing system and environmental conditions, Veritas was able
to adapt its test cases to fit the environmental conditions
within the specified safety tolerance, whereas the unopti-
mized test cases could not handle the unexpected uncertain-
ties, and could become invalid following a context change.

As Veritas has been shown to maximize fitness (Figure 4)
and minimize false negatives (Figure 5), we can safely reject
Hp and accept Hi, and furthermore state that Veritas can
optimize run-time test cases to fail less often in uncertain
environments while maintaining a valid representation of the
operational context.

Threats to Validity. This research was intended as a
proof of concept study to determine the feasibility of the
MAPE-T feedback loop in run-time optimization of test
cases for varying environments. We applied the Veritas ap-
proach to optimize test cases at run time by harnessing a
(1+1)-ONLINE EA. As a point of reference, we compared the
resulting Veritas-generated test specifications with those that
were unoptimized throughout execution. The SVS was mod-
eled as an adaptive system by describing mode changes as
the impetus for self-reconfiguration. As such, one threat to
validity is if Veritas will achieve similar results in other adap-
tive system domains not involving mode changes. Another
threat involves the validity of the utility functions as de-
rived by the requirements engineer, given their importance
to validating the adapted test cases. Furthermore, as Ver-
itas was intended as a proof of concept, we did not fully
study the impact of run-time testing on a live system (e.g.,
performance impact). Sensitivity of test cases is another
concern, however we did not intentionally derive them as
such. Finally, the representativeness of the initially derived
test cases with respect to the encountered system and en-
vironmental configurations throughout execution is another
threat to validity.

S. RELATED WORK

This section overviews related work on search-based soft-
ware testing and run-time testing.

Search-Based Software Testing. The field of search-
based software testing explores how software testing can be
augmented with search-based techniques, such as genetic al-
gorithms or hill climbing. These search-based techniques
have been applied to many branches of software testing, in-
cluding structural, model-based, mutation, and regression
testing [17, 22], as the exploratory nature of these techniques
can automatically provide a representative set of test cases.
EvoSuite [13] and Nighthawk [1] are frameworks that lever-
age evolutionary computation for test suite generation and
unit test case instantiation, respectively. While search-based
techniques can guide the creation of a diverse and represen-
tative set of tests automatically, these techniques tend to be
design-time approaches, whereas Veritas searches for optimal
test case parameter combinations at run-time.

Run-Time Testing. Testing software at run time pro-
vides useful insights into the behavior and correctness of
a system as it executes. Run-time testing has been previ-
ously implemented as model-based [16] and an adaptation
of reinforcement learning [32]. Unit testing has also been
incorporated into run-time verification via extensions to an
assertion language [23]. Previously, run-time software test-
ing of real-time systems has been facilitated by recording
live execution traces to a secondary computer and replay-
ing the data in parallel, examining the traces for faults [30].

Filieri et al. [11] used Markov models to handle uncertainty
within run-time monitoring. Run-time testing has also been
applied using agent-based approaches [25]. Each of these
techniques has facilitated run-time testing, however, Veri-
tas combines evolutionary search for optimal test cases with
goal-based validation.

Regression Testing. Regression testing provides assur-
ance that software is valid following major changes to the
system [28, 35]. As such, the selection of test cases is an
important consideration in determining what must be reval-
idated. An excellent analysis of different test case selection
techniques [28] describes different approaches to test case se-
lection, including analysis of linear equations, symbolic ex-
ecutions, and program dependence graphs. Moreover, test
case prioritization can reduce the cost of regression testing
to ensure that important and relevant test cases are executed
first [10]. The Veritas framework actively monitors operating
conditions via pre-defined agents to determine which test
cases are selected for regression testing. Currently, Veritas
does not prioritize test case execution, opting instead to ex-
ecute each in parallel.

6. CONCLUSION

In this paper we presented Veritas, a run-time testing frame-
work that harnesses a (1+1)-ONLINE EA to search for opti-
mal test case parameters as uncertainty within the system
and environment manifests. Veritas is an example realiza-
tion of the MAPE-T feedback loop, comprising the Moni-
toring, Analyzing, Planning, and Ezecuting states. Specif-
ically, Veritas monitors an SAS for contextual change, gen-
erates an appropriate test plan, analyzes the test results,
and adapts test cases as necessary. Veritas then validates
each test case against a set of corresponding utility func-
tions to ensure that each test case is representative of the
intended system design. We demonstrated the applicability
of Veritas on an SVS that was tasked to clean a room while
maintaining functional and safety concerns. The SVS was
subjected to uncertainties in the form of randomly placed
objects, steps that must be avoided, and objects that may
otherwise damage the SVS. Experimental results confirmed
that Veritas-adapted test cases performed better and reduced
the amount of false negative results more often than non-
adapted test cases across varying environments. Future di-
rections for this work include investigating other techniques
for planning run-time test execution, exploring other evolu-
tionary techniques such as hill climbing and simulated an-
nealing for run-time adaptation, and providing feedback to
the MAPE-K loop to trigger a system reconfiguration.

7. ACKNOWLEDGMENTS

This work has been supported in part by NSF grants CCF-
0820220, DBI-0939454, CNS-0854931, CNS-1305358, Ford
Motor Company, and General Motors. Any opinions, find-
ings, and conclusions or recommendations expressed in this
material are those of the author(s) and do not necessarily
reflect the views of the National Science Foundation, Ford,
or other research sponsors.

8. REFERENCES

(1] J. H. Andrews, T. Menzies, and F. C. Li. Genetic
algorithms for randomized unit testing. I[EEE Trans. on
Software Engineering, 37(1):80-94, January 2011.

2]

(3]

(4]

(5]

[6]

(7]

(8]

(9]

(10]

(11]

(12]

(13]

14]

(15]

[16]

(17]

N. Bencomo and A. Belaggoun. Supporting
decision-making for self-adaptive systems: from goal models
to dynamic decision networks. In Requirements
Engineering: Foundation for Software Quality, pages
221-236. Springer, 2013.

A. Bertolino. Software testing research: Achievements,
challenges, dreams. In Future of Software Engineering,
2007. FOSE 07, pages 85—103, 2007.

N. Bredeche, E. Haasdijk, and A. Eiben. On-line, on-board
evolution of robot controllers. In P. Collet, N. Monmarché,
P. Legrand, M. Schoenauer, and E. Lutton, editors, Artifical
FEwvolution, volume 5975 of Lecture Notes in Computer
Science, pages 110-121. Springer Berlin Heidelberg, 2010.
J. Camara and R. de Lemos. Evaluation of resilience in
self-adaptive systems using probabilistic model-checking. In
Software Engineering for Adaptive and Self-Managing
Systems., pages 53 —62, june 2012.

B. H. C. Cheng, R. Lemos, H. Giese, P. Inverardi,

J. Magee, and et al. Software engineering for self-adaptive
systems. In B. H. C. Cheng, R. Lemos, H. Giese,

P. Inverardi, and J. Magee, editors, Software Engineering
for Self-Adaptive Systems, chapter Software Engineering for
Self-Adaptive Systems: A Research Roadmap, pages 1-26.
Springer-Verlag, Berlin, Heidelberg, 2009.

B. H. C. Cheng, P. Sawyer, N. Bencomo, and J. Whittle. A
goal-based modeling approach to develop requirements of
an adaptive system with environmental uncertainty. In
Proc. of the 12th International Conference on Model
Driven Engineering Languages and Systems, pages
468-483, Berlin, Heidelberg, 2009. Springer-Verlag.

L. Chung, B. Nixon, E. Yu, and J. Mylopoulos.
Non-functional requirements. Software Engineering, 2000.
S. Droste, T. Jansen, and I. Wegener. On the analysis of
the (141) evolutionary algorithm. Theoretical Computer
Science, 276(1):51-81, 2002.

S. Elbaum, A. Malishevsky, and G. Rothermel. Test case
prioritization: a family of empirical studies. I[EEE
Transactions on Software Engineering, 28(2):159-182,
2002.

A. Filieri, C. Ghezzi, and G. Tamburrelli. Run-time
efficient probabilistic model checking. In Proc. of the 33rd
International Conference on Software Engineering, pages
341-350, Waikiki, Honolulu, Hawaii, USA, 2011. ACM.

A. Filieri, C. Ghezzi, and G. Tamburrelli. A formal
approach to adaptive software: continuous assurance of
non-functional requirements. Formal Aspects of Computing,
24:163-186, 2012.

G. Fraser and A. Arcuri. Evosuite: automatic test suite
generation for object-oriented software. In Proc. of the 19th
ACM SIGSOFT symposium and the 18th European
conference on Foundations of software engineering,
ESEC/FSE 11, pages 416-419, Szeged, Hungary, 2011.
ACM.

E. M. Fredericks, A. J. Ramirez, and B. H. C. Cheng.
Towards run-time testing of dynamic adaptive systems. In
Proceedings of the 8th International Symposium on
Software Engineering for Adaptive and Self-Managing
Systems, SEAMS ’13, pages 169-174. IEEE Press, 2013.

C. Ghezzi. Adaptive software needs continuous verification.
In Software Engineering and Formal Methods (SEFM),
2010 8th IEEE International Conference on, pages 3 —4,
Sept. 2010.

H. J. Goldsby, B. H. C. Cheng, and J. Zhang. Models in
software engineering. In H. Giese, editor, Models in
Software Engineering, chapter AMOEBA-RT: Run-Time
Verification of Adaptive Software, pages 212-224.
Springer-Verlag, Berlin, Heidelberg, 2008.

M. Harman, P. McMinn, J. Souza, and S. Yoo. Search
based software engineering: Techniques, taxonomy, tutorial.
In B. Meyer and M. Nordio, editors, Empirical Software
Engineering and Verification, volume 7007 of Lecture Notes

(18]
(19]

20]

21]

(22]

23]

(24]

(25]

[26]

27]

(28]

29]

(30]

(31]

(32]

(33]

(34]

(35]

in Computer Science, pages 1-59. Springer Berlin
Heidelberg, 2012.

J. H. Holland. Adaptation in Natural and Artificial
Systems. MIT Press, Cambridge, MA, USA, 1992.

J. Kephart and D. Chess. The vision of autonomic
computing. Computer, 36(1):41 — 50, jan 2003.

M. Lajolo, L. Lavagno, and M. Rebaudengo. Automatic
test bench generation for simulation-based validation. In
Proc. of the FEighth International Workshop on
Hardware/Software Codesign, pages 136-140, San Diego,
California, United States, 2000. ACM.

P. McKinley, S. Sadjadi, E. Kasten, and B. H. C. Cheng.
Composing adaptive software. Computer, 37(7):56 — 64,
july 2004.

P. McMinn. Search-based software testing: Past, present
and future. In Software Testing, Verification and
Validation Workshops (ICSTW), 2011 IEEE Fourth
International Conference on, pages 153-163, 2011.

E. Mera, P. Lopez-Garcia, and M. Hermenegildo.
Integrating software testing and run-time checking in an
assertion verification framework. In Logic Programming,
pages 281-295. Springer, 2009.

S. Neema, T. Bapty, and J. Scott. Development
environment for dynamically reconfigurable embedded
systems. In Proc. of the International Conference on Signal
Processing Applications and Technology. Orlando, FL,
1999.

C. D. Nguyen, A. Perini, P. Tonella, and F. B. Kessler.
Automated continuous testing of multiagent systems. In
The Fifth European Workshop on Multi-Agent Systems
(EUMAS), 2007.

N. Qureshi, S. Liaskos, and A. Perini. Reasoning about
adaptive requirements for self-adaptive systems at runtime.
In Proc. of the 2011 International Workshop on
Requirements at Run Time, pages 16 —22, aug. 2011.

A. Ramirez, A. Jensen, B. H. C. Cheng, and D. Knoester.
Automatically exploring how uncertainty impacts behavior
of dynamically adaptive systems. In Automated Software
Engineering (ASE), 2011 26th IEEE/ACM International
Conference on, pages 568 —571, nov. 2011.

G. Rothermel and M. J. Harrold. Analyzing regression test
selection techniques. Software Engineering, IEEE
Transactions on, 22(8):529-551, 1996.

H.-P. Schwefel. Numerical optimization of computer
models. John Wiley & Sons, Inc., 1981.

J.-P. Tsai, K.-Y. Fang, H.-Y. Chen, and Y.-D. Bi. A
noninterference monitoring and replay mechanism for
real-time software testing and debugging. Software
Engineering, IEEE Transactions on, 16(8):897-916, 1990.
A. van Lamsweerde. Requirements Engineering: From
System Goals to UML Models to Software Specifications.
Wiley, 2009.

M. Veanes, P. Roy, and C. Campbell. Online testing with
reinforcement learning. In Formal Approaches to Software
Testing and Runtime Verification, pages 240-253. Springer,
2006.

W. E. Walsh, G. Tesauro, J. O. Kephart, and R. Das.
Utility functions in autonomic systems. In Proc. of the
First IEEE International Conference on Autonomic
Computing, pages 70-77, New York, NY, USA, 2004. IEEE
Computer Society.

K. Welsh and P. Sawyer. Understanding the scope of
uncertainty in dynamically adaptive systems. In Proc. of
the Sizteenth International Working Conference on
Requirements Engineering: Foundation for Software
Quality, volume 6182, pages 2—16. Springer, 2010.

W. E. Wong, J. R. Horgan, S. London, and H. Agrawal. A
study of effective regression testing in practice. In Proc.
The Eighth International Symposium On Software
Reliability Engineering, pages 264-274. IEEE, 1997.

