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Abstract—Self-adaptive systems (SAS) can reconfigure at run-
time to mitigate uncertainties posed by environments for which
they may not have been explicitly designed. High-assurance
SAS applications must continually deliver acceptable behavior
for critical services, enabling the need for run-time validation
techniques. To this end, run-time testing can provide additional
assurance that an SAS will continue to behave as expected while
executing under unknown conditions. This paper introduces
Proteus, a framework for adaptive run-time testing on an SAS.
Proteus facilitates both execution and adaptation of run-time
testing activities to ensure that the SAS continues to execute
according to its requirements and that both test plans and
test cases continually remain relevant to changing operating
conditions. We demonstrate our approach by applying it to
a simulated self-adaptive remote data mirroring network that
must efficiently diffuse data while experiencing adverse operating
conditions. Experimental results suggest that Proteus can reduce
the number of executed irrelevant, false positive, and false
negative test cases at run time to ensure that online testing
activities remain relevant as the SAS encounters uncertainty.

I. INTRODUCTION

Self-adaptive systems (SAS) are often exposed to a number
of environmental conditions that may prevent the system from
satisfying its requirements. As such, SASs can self-reconfigure
at run time to accommodate changing environmental condi-
tions [1], [2], [3]. Testing an SAS should provide assurance
that the new configurations satisfy requirements at design time
and run time. Changing environmental conditions, however,
may necessitate updates to both test suites and test cases
developed at design time [4] to ensure testing relevance at
run time [5], [6], where relevance indicates the applicability
of a test case to its environment. This paper presents Proteus,1
a requirements-driven approach for managing and dynamically
adapting run-time testing activities based upon changing sys-
tem and environmental conditions.

Despite the numerous techniques that have been developed
for assessing the assurance of an SAS at both design time [7],
[8], [9] and run time [8], [10], [11], [12], monitoring and
adapting a test suite at run time to maintain relevance to chang-
ing system and environmental conditions has been largely
unexplored. To this end, the MAPE-T feedback loop [13]
was proposed to identify key elements of a testing framework
for adaptive systems, where the testing elements and process
should be adaptive to mitigate run-time uncertainty. A key

1In Greek mythology, Proteus was a deity that could change his form at
will.

challenge in performing run-time testing is how to adapt
testing to the SAS as it reconfigures. Since test plan genera-
tion [14], [15], [16] is an essential aspect of the testing process,
they should be explicitly defined for online testing [13] when
assessing run-time assurance of an SAS.

Proteus is a framework for enabling online adaptive testing
to address assurance at run time in the face of uncertainty.
Proteus adapts both test suites and test cases at run time
to ensure that both remain relevant to changing operating
conditions, where a test suite comprises a collection of test
cases. Moreover, Proteus defines an adaptive test plan for each
operating context that comprises all possible test suites directly
related to that operating context, that is, a configuration of
system and environmental parameters. For instance, a test case
that measures a specific value for the expected capacity of a
data mirror may not be applicable if an unexpected incident
causes damage to that data mirror’s hard drive, thereby reduc-
ing its available capacity for data storage. If the damage to the
hard drive is tolerable, then Proteus can adapt the expected
value of the test case to reflect the new capacity. However, if
the damage is sufficiently extensive that the hard drive fails,
then Proteus can update test suites within the adaptive test
plan to avoid testing the hard drive until it has been replaced.
Adaptive testing can provide an approach for ensuring that test
cases are relevant to their environment as conditions change,
thereby increasing testing effectiveness. Within Proteus, test
cases that monitor invariant, safety, and failsafe conditions are
precluded from adaptation and always executed to ensure that
the SAS is executing both safely and according to its invariant
requirements. By managing the adaptation and execution of
run-time testing for an SAS as it self-adapts, Proteus therefore
provides a realization of the SAS MAPE-T run-time testing
feedback loop [13].

Proteus enables both coarse-grained and fine-grained adap-
tation of test suites and test cases, respectively. Proteus
provides coarse-grained testing adaptation by deriving test
suites for each adaptive test plan at run time, where each
adaptive test plan corresponds to a particular operating context.
Each adaptive test plan comprises a default test suite and a
set of automatically generated test suites, where the default
test suite comprises all test cases relevant to the associated
operating context. Proteus performs a testing cycle upon
invocation of a new SAS configuration. Throughout a testing
cycle, Proteus derives and executes test suites, monitors test



results, and invokes Veritas [4] to perform fine-grained test
case parameter adaptation as necessary. Veritas is a run-time,
online evolutionary approach for evolving test case parameter
values to ensure that test cases remain relevant to changing
conditions. A testing cycle is completed upon invocation of a
new SAS configuration or determination that all executed test
cases have successfully passed.

We demonstrate the use of Proteus by applying it to
a simulation of a remote data mirroring (RDM) network
that must replicate and distribute data to all mirrors within
the network while experiencing network link failures and
dropped or delayed messages. Experimental results indicate
that testing a system with Proteus can significantly decrease
the amount of irrelevant, false positive, and false negative test
cases executed at run time when compared with manually-
derived test suites that performed no run-time adaptation. The
remainder of this paper is organized as follows. Section II
provides background information on the RDM, goal-oriented
requirements engineering, and software testing. Section III
describes the Proteus approach using the RDM as a motivating
example. Section IV then describes our experimental setup
and our experimental results. Following, Section V overviews
related work. Lastly, Section VI discusses our findings and
presents future directions.

II. BACKGROUND AND APPLICATION

This section provides relevant background information on
the RDM, goal-oriented requirements engineering, and soft-
ware testing.

A. Remote Data Mirroring

Remote data mirroring (RDM) is a data protection technique
for maintaining data availability and preventing data loss by
storing copies (i.e., replicates) on servers (i.e., data mirrors) in
physically remote locations [17], [18]. By replicating data on
remote data mirrors, an RDM network can provide continuous
access to data and moreover ensure that data is not lost or
damaged. In the event of an error or failure, data recovery
can be facilitated by either requesting or reconstructing the
lost or damaged data from another active data mirror. Addi-
tionally, the RDM network must replicate and distribute data
in an efficient manner by minimizing consumed bandwidth
and providing assurance that distributed data is not lost or
corrupted.

The RDM can reconfigure at run time in response to
uncertainty, including dropped or delayed messages and net-
work link failures. Furthermore, each network link incurs an
operational cost that directly impacts a controlling budget
and also has a measurable throughput, latency, and loss rate.
Collectively, these metrics determine the overall performance
and reliability of the RDM. To mitigate unforeseen issues, the
RDM can reconfigure in terms of its network topology and
data mirroring protocols. Specifically, the RDM can selectively
activate and deactivate network links to change its overall
topology. Furthermore, each data mirror can select a remote
data mirroring protocol, defined as either synchronous or

asynchronous propagation. Synchronous propagation ensures
that the receiving or secondary data mirror both receives
and writes incoming data before completion at the primary
or sending site. Batched asynchronous propagation collects
updates at the primary site that are periodically transmitted
to the secondary site. Given its complex and adaptive nature,
the RDM application can be modeled and implemented as an
SAS [19].

B. Goal-Oriented Requirements Engineering

Goal-oriented requirements engineering (GORE) is an ap-
proach that graphically captures high-level objectives and
constraints of a system and can be used to guide both the
elicitation and analysis of requirements. Different types of
goals may be specified in the GORE process. Functional
goals define a service that the system must provide to its
stakeholders. Non-functional goals define a quality constraint
or criterion upon delivery of those services. Safety goals
must always be satisfied, as they declare a critical service
objective often associated with safety concerns. Failsafe goals
define a safe fallback in case of critical system failure [20].
Furthermore, functional goals may be classified as invariant
(denoted by the keyword “Maintain” or “Avoid”) or non-
invariant (denoted by the keyword “Achieve”). Invariant goals
must always be satisfied by the system, and non-invariant goals
may be temporarily unsatisfied at run time.

GORE decomposes high-level goals into fine-grained sub-
goals [21] by using a directed, acyclic graph. Each node in
the graph represents a goal and each edge represents a goal
refinement. KAOS [21], [22] provides one such approach for
systematically refining goals with AND or OR refinements.
An AND-refined goal is considered satisfied if all its subgoals
have also been satisfied, and an OR-refined goal is satisfied
if at least one subgoal has been satisfied. Goal refinement
continues until an agent has been assigned responsibility for
the satisfaction of each leaf-level goal (i.e., requirement).

Figure 1 provides a KAOS goal model of the RDM appli-
cation. Specifically, the RDM must maintain remotely stored
copies of data (A). To satisfy this goal, the RDM must
maintain operational costs within a fixed budget (B) while
ensuring that the number of disseminated data copies matches
the number of available servers (C). To satisfy Goal (B), the
RDM must be able to measure all network properties (D) while
ensuring that both the minimum number of network links are
active (E) and that the network is unpartitioned (F). To satisfy
Goal (C), the RDM must ensure that risk (G) and time for data
diffusion (H) each remain within pre-defined constraints, and
moreover, the cost of network adaptation must be minimized
(I). To satisfy Goals (D) - (I), RDM agents, such as sensors
and actuators, must be able to measure and affect all available
network properties, respectively.

Utility functions. Utility functions can be used to quantify
the degree or level of satisfaction of system requirements
or behaviors in autonomic computing systems during execu-
tion [23], [24]. Moreover, utility functions can be derived
for KAOS goals and can then be used to determine the
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Fig. 1. Goal model for RDM application.

run-time satisfaction of each individual goal [25]. Typically,
a utility value of 0.0 indicates a requirements violation, a
utility value of 1.0 indicates complete satisfaction, and any
value in between represents the degree of satisfaction for that
particular requirement. For instance, a utility function can
measure the satisfaction of Goal (B), “Maintain [Operational
Cost  Budget],” by monitoring the current cost of operating
the network.

Equation (1) presents an example utility function that mon-
itors the current cost of operating the network with respect to
the allocated budget:

utility
Goal B

= 1.0� operational cost

budget
(1)

C. Software Testing

Software testing can be used to provide assurance that a
system under test is satisfying its requirements. Many ap-
proaches exist for testing [26], [27], [28], each with a different
focus, such as structural, functional, and regression testing.
Structural testing focuses on coverage, such as branch or data
flow coverage [29]. Functional testing verifies a system against
a test or design specification [29]. Finally, regression testing
provides assurance that a system satisfies its requirements
following a major change to the system, such as a new
software release or change in configuration [30], [31].2

2The methods of testing implemented within this paper are predominantly
functional and regression testing.

Software testing is historically a design-time process. How-
ever, testing at run time can provide assurance that a system
continually satisfies its requirements during execution [27],
[32]. Run-time testing is an approach for performing test cases
as the system under test executes. As such, run-time testing
can incur a performance cost, as the system must perform
testing activities in parallel with normal system execution.
Approaches exist for mitigating the performance issue, includ-
ing multi-agent testing [8] and record-and-replay testing [33].
However, test cases can lose relevance during execution as
uncertainty manifests within the operating context, necessitat-
ing the need for online test case adaptation to ensure that test
cases remain applicable to the new operating context [4]. Run-
time testing differs from monitoring utility functions in that
utility functions measure the satisfaction of key objectives or
high-level requirements at run time, whereas testing enables a
finer-grained approach for assessing requirements satisfaction
as to whether individual features or functions are behaving
correctly.

For this paper, we use the definitions of test plans and test
cases as defined by the IEEE [29]. In particular, a test case
comprises an expected value and the conditions necessary for
execution. A test plan describes the scope and schedule of
testing activities. An adaptive test plan, therefore, describes
how a set of test suites are used to test a particular operating
context, where a test suite comprises a collection of test cases
to be executed.

III. APPROACH

Proteus is a requirements-driven approach for managing
run-time testing. Specifically, Proteus is a framework for per-
forming testing activities at run time, including test execution
and online adaptation. To this end, Proteus provides two levels
of test adaptation: test suite adaptation and test case parameter
value adaptation. We next describe the Proteus framework and
online test adaptation in turn.

A. Proteus Framework

Proteus is a framework for managing run-time testing
activities, including adaptation and execution of test suites
and test cases. To facilitate this approach, Proteus performs
two main tasks. First, an adaptive test plan is defined for
each SAS configuration at design time, where each SAS
configuration corresponds to a particular operating context and
each adaptive test plan comprises multiple test suites. Second,
Proteus performs a testing cycle during the execution of each
new SAS configuration, where a testing cycle may comprise
multiple iterations that each execute a different test suite. Each
task is next described in turn.

Adaptive test plan. An adaptive test plan comprises all
possible test suites that can be derived for a particular oper-
ating context, or combination of system and environmental
parameters. As such, Proteus defines an adaptive test plan
for each SAS configuration, where each adaptive test plan
comprises a default test suite and a set of intermediate,
automatically-derived test suites. We next describe how both



the default test suites are derived at design time and how the
intermediate test suites are derived at run time. For illustration
purposes, consider that an SAS test engineer is configuring
adaptive test plan ATP

i

for a particular SAS configuration C
i

in response to a particular set of operating conditions OC
i

.
At design time, an SAS test engineer defines a default test

suite TS
i.0 for an adaptive test plan ATP

i

, where a default
test suite specifies all test cases that are relevant to the current
operating context OC

i

and SAS configuration C
i

. As such,
an activation state is defined for each test case within TS

i.0.
Particularly, a test case can be labeled as:

• ACTIVE: An ACTIVE test case to be executed when the
current test suite is performed. Moreover, all test cases
that monitor safety, failsafe, or invariant conditions are
required to always be labeled as ACTIVE to ensure that
the SAS continually executes safely and according to its
invariant requirements.

• INACTIVE: An INACTIVE test case is not executed
when the current test suite is performed. A test case is
labeled INACTIVE at run time if it passed successfully
during the previous testing iteration for the current testing
cycle.

• N/A: An N/A test case is never executed within the
current adaptive test suite, as it is not relevant to the
SAS configuration and operating context. N/A test cases
cannot become ACTIVE or INACTIVE within the current
adaptive test plan.

As such, the SAS engineer designates all relevant test cases
as ACTIVE for TS

i.0 and all test cases that are not relevant
as N/A. For instance, a data mirror within the RDM network
may be using asynchronous propagation to distribute data. In
this case, test cases that validate the synchronous propagation
approach would be designated as N/A as they are not relevant
to the current situation. Collectively, the set of test cases with
their associated status form a unique test suite within ATP

i

.
Proteus dynamically generates test suites at run time to

provide coarse-grained test adaptation, where a new test suite
is generated based upon monitored test results. For example,
following execution of TS

i.0, the test cases designated AC-
TIVE are executed and their results are analyzed, resulting
in a combination of passed and failed test cases. As such,
Proteus can derive a new test suite TS

i.j

, based on the default
test suite TS

i.0, to reflect the combination of test results. The
application of a test case status (i.e., ACTIVE or INACTIVE)
with respect to testing results is discussed in the following
section.

Figure 2 illustrates the difference between default test suite
TS1.0 and dynamically-generated test suite TS1.1 for a partic-
ular adaptive test plan ATP1. Specifically, the SAS engineer
designated all test cases to be ACTIVE with the exception of
TC3, as it is considered irrelevant and therefore designated
N/A. Following execution of TS1.0, Proteus determined that
TC4 was satisfied and therefore was designated as INACTIVE,
thereby generating TS1.1. Upon execution of TS1.1, all test
cases will be executed with the exception of TC3 and TC4.
There exists the danger that a fault will occur during the

testing cycle and not be caught by a test case because it
was previously designated as INACTIVE. However, if such a
fault occurs, the SAS monitoring infrastructure should trigger
a reconfiguration, thereby starting a new testing cycle in which
the INACTIVE test case is reactivated. The run-time testing
cycle is next described in detail.

TS1.1 ...

TC1
TC2
TC3
TC4
TC5

...

ACTIVE
ACTIVE
N/A

INACTIVE
ACTIVE

TC1
TC2
TC3
TC4
TC5

...

ACTIVE
ACTIVE
N/A

ACTIVE
ACTIVE

ATP1

TS1.0

Fig. 2. Example of test case configuration for TS1.0 and TS1.1.

Testing cycle. Proteus performs a testing cycle at each step
of SAS execution, where a testing cycle comprises several
iterative steps. For illustration purposes, consider that an SAS
has invoked configuration C

i

in response to operating context
OC

i

, thereby activating adaptive test plan ATP
i

. The steps
that define a testing cycle are next described in turn:

(1) Execution of default test suite. A testing cycle begins
upon invocation of SAS configuration C

i

. Proteus requires that
the default test suite TS

i.0 always be executed at the beginning
of a testing cycle for two reasons. First, TS

i.0 provides an
overview of the current state of C

i

and OC
i

, as minor or tran-
sient changes to OC

i

may cause test cases to react differently.
For example, a minor or transient change to OC

i

may not
necessitate an SAS reconfiguration, however it is detectable
at the testing level, thereby providing a finer-grained view of
SAS behavior at run time than can be provided by higher-level
utility functions. Second, TS

i.0 provides regression analysis of
SAS configuration C

i

in response to operating context OC
i

.
For instance, a test case that passed in a previous testing cycle
may fail in the current testing cycle, indicating an error in C

i

in response to minor changes to OC
i

. To perform the default
test suite, Proteus executes each test case that has been labeled
as ACTIVE.

(2) Analysis of test results. Next, Proteus analyzes the
results of each executed test case. To provide a quantitative
measure of testing and to enable online test adaptation, we
define test case relevance to measure how relevant a test
case is to its current operating context. A test case may lose
relevance if minor, yet tolerable, changes to the operating
context cause the parameter values for existing test cases to no
longer be valid. A typical relevance calculation is presented
in Equation 2:



relevance

TCi = 1.0 � |value
measured

� value

expected

|
|value

expected

+ value

variance

| (2)

where a value of 0.0 indicates no relevance and 1.0 indicates
full relevance. Moreover, value

measured

is the calculated value
of the test case, value

expected

is the expected value of the test
case, and value

variance

is defined by the SAS test engineer
as the maximum value that value

measured

may take to ensure
that relevance

TCi is normalized on [0.0, 1.0]. Furthermore, a
test result may also be designated as having passed or failed,
based on a threshold for test case relevance defined by the
SAS test engineer. A higher threshold will result in more
failed test cases and incur more test adaptations while a lower
threshold will yield more passed test cases and a lower amount
of test adaptations. For the purposes of this work, we selected
a relevance threshold of 0.75 to trigger the test adaptation
process more often throughout SAS execution to measure the
effects of Proteus.

Test case relevance must also be validated following testing
adaptation. To this end, Proteus uses the utility functions
defined for the system goal model (c.f., Section II-B) to ensure
that test cases have not been adapted incorrectly. Each test
case must be correlated to at least one utility function for
comparison. Proteus uses utility values for two purposes. First,
a utility value may indicate that a particular goal is unsatisfied
and therefore the SAS may require reconfiguration. Second,
the utility values act as a point of reference to which test
case results are validated at run time. For reference, a utility
function is considered violated if the calculated utility value
is 0.0 and otherwise is considered satisfied to some degree.

The relevance value of each test case is then compared to
its correlated utility function(s) to determine if the test result
is a:

• True positive: Test case relevance is within
[Threshold, 1.0] and its correlated utility value is
within (0.0, 1.0], indicating that the test is valid and
has passed. No extra action is required by the SAS
reconfiguration engine or the Proteus test adaptation
framework.

• True negative: Test case relevance is within
[0.0, Threshold) and its correlated utility value equals
0.0, indicating that an error has occurred and the test has
failed. Presence of a true negative implies that the SAS
requires reconfiguration, halting further testing until the
issue has been resolved.

• False positive: Test case relevance is within
[Threshold, 1.0] and its correlated utility value equals 0.0,
requiring both SAS reconfiguration and test adaptation.
This result indicates that the test case has passed,
however its correlated goal is not satisfied. In this case,
the test case and utility value are in disagreement,
indicating that the test case and/or the utility function
are incorrect. Test cases that are false positive require
adaptation to become relevant. As the SAS will perform
an immediate reconfiguration as a result of the violated

utility function, validation of an adapted false positive
will not occur until a future testing cycle when the test
case in question is ACTIVE. Moreover, an SAS test
engineer can analyze the false positive and associated
execution trace to determine the source of the error,
particularly if the test case or utility function is in error.3

• False negative: Test case relevance is within
[0.0, Threshold) and its correlated utility value is
within (0.0, 1.0], indicating that the test case requires
adaptation. In this case, the test case and utility value
are again in disagreement. Given that the utility function
is satisfied, the test case requires adaptation to become
relevant again. Moreover, an SAS test engineer can
analyze the state of the SAS and its environment at this
point in time to determine the reason(s) that the test case
became irrelevant.3

(3) Fine-grained test case parameter value adaptation.

Following the analysis of test results, Proteus determines
if fine-grained adaptation is necessary to realign test case
parameter values with OC

i

. To this end, test cases that have
resulted in a false positive or false negative are selected
for fine-grained adaptation. For each false negative or false
positive test case, Proteus invokes Veritas [4], an online,
evolutionary computation-based approach for optimizing test
case parameters at run time, to explore the search space of
possible test case parameter values that better match current
operating conditions. Veritas yields an optimized expected
value for each provided test case that better reflects the
environment. Moreover, the optimized test case is used in all
existing test suites TS

i.j

, including the default test suite TS
i.0,

within ATP
i

.
However, test cases that monitor safety, failsafe, or invariant

requirements or conditions (hereafter termed “invariant test
cases”) are precluded from adaptation to ensure that all safety
and invariant concerns are continuously satisfied. In the event
that an invariant test case results in a false positive or false
negative, an SAS engineer is notified to localize the cause of
the error, as such an error would be considered catastrophic.

(4) Coarse-grained test plan adaptation. Next, Proteus
performs coarse-grained adaptation based upon test results.
Coarse-grained adaptation is used to reduce the amount of
test cases that are unnecessarily executed at run time. For
instance, as testing is performed at each step of SAS execution,
measures are required to reduce the overall impact of testing.
To this end, Proteus now labels test cases as ACTIVE or
INACTIVE based on the results of Step (3):

• Invariant test cases are always labeled as ACTIVE to en-
sure that they are continually re-validated and precluded
from fine-grained adaptation.

• True positive test cases are labeled as INACTIVE, as they
do not need to be re-validated during the current testing
cycle.

3For this work, we assume that all utility functions have been derived
correctly, and therefore a false positive indicates an error in a test case
parameter value.



• False positive and false negative test cases are labeled as
ACTIVE, as they require additional validation following
adaptation.

The combination of test case statuses forms a new test suite
TS

i.j

. If another iteration of the testing cycle is required (See
Step (5) as follows), then the process iterates back to Step (1),
where TS

i.j

replaces TS
i.0 for execution.

(5) End of testing cycle. A testing cycle terminates for
two reasons. First, a new SAS configuration is invoked based
upon a major change to the current operating context (e.g.,
SAS configuration C

k

is invoked based upon identification of
operating context OC

k

, at which point ATP
k

is activated).
Second, all test cases have resulted in true positives, thereby
resulting in each test case having a status of either INACTIVE
or N/A. In this case, run-time testing is halted until a change
in operating context is detected by the SAS.

B. Proteus Overview

Figure 3 presents a graphical overview of an SAS within
the Proteus framework. Specifically, this figure presents the
logical connections between SAS configurations, operating
contexts, adaptive test plans, and the test suites contained
within the adaptive test plans. For example, SAS configuration
C1 is triggered by operational context OC1. When testing
begins, Proteus selects the associated adaptive test plan ATP1.
ATP1 comprises a collection of test suites TS1.j that each
define a particular configuration of test cases to be executed.
Moreover, TS1.0 is considered to be the default test suite for
ATP1, and as such, is executed initially each time ATP1 is
selected for testing. The test case parameter values for all
test cases within ATP1 are stored in its associated data store
Params1. Finally, each derived test suite TS1.j comprises a
collection of test cases that each specify an activation state.
Specifically, Proteus selectively activates or deactivates test
cases based on test results, and therefore the configuration of
test case states (i.e., ACTIVE, INACTIVE, or N/A) define a
unique test suite.

Figure 3 also demonstrates how different testing cycles
derive new test suites at run time. Specifically, the results
from two iterations through a testing cycle are shown in
Figure 3 by different patterns in each TS

i.j

. The first iteration
is represented by the darker, right-slanted shading, and the
second iteration is represented by the lighter, left-slanted
shading. TS1.0, as the default test suite, was executed at the
start of both testing cycles for regression purposes. Following
execution of the default test suite, both testing cycles generated
TS1.1 based on the configuration of test cases. Following
execution of TS1.1, the first testing cycle then generated
TS1.2, TS1.3, and TS1.4, whereas the second testing cycle
generated TS1.5, TS1.6, and TS1.7.

Regression Testing. To continually ensure that the SAS is
satisfying its requirements even as the environment changes,
Proteus performs different levels of regression testing. For
instance, test cases that monitor invariant, safety, or failsafe
conditions (i.e., Figure 1, Goals (A) and (B)) must always
remain ACTIVE to ensure that they are re-validated when
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Fig. 3. Example of SAS within Proteus framework.

each test suite is executed. Test cases that monitor non-
invariant goals must also be re-validated in the event of a
contextual change or SAS self-reconfiguration. For instance,
following reconfiguration of the SAS from C1 to C2, the
default test suite TS

i.0 is executed with all relevant test cases
set to ACTIVE. Assuming that a particular test case has been
previously validated in a prior testing cycle, re-executing that
test case in the current state provides functional regression
assurance.

IV. EXPERIMENTAL RESULTS

This section presents our experimental setup and discusses
the results obtained by applying Proteus to the RDM. We
also present preliminary results from studying the impact of
our run-time testing framework on the RDM.

A. Experimental Setup

For this paper, the RDM application has been implemented
as a completely connected graph, where each node represents
an RDM and each edge represents a network link. For each
experimental treatment, the RDM network comprised between
15 and 30 data mirrors and was required to disseminate
between 100 and 200 messages over 300 timesteps.

Uncertainty was simulated within both the environment and
within the RDM application itself. In particular, the RDM
can experience unpredictable network link failures, randomly
dropped or delayed messages, and noise within both data mir-
ror sensors and network links at each timestep of simulation.
The RDM network could then self-reconfigure in response
to these adverse conditions to continue execution. Possible
reconfigurations include updates to the network topology or
data mirror propagation parameters.

The input test specification comprised 36 test cases, where
7 test cases were considered invariant and therefore pre-



cluded from adaptation. Moreover, invariant test cases were
re-executed each testing cycle to ensure that system constraints
are continually satisfied. The remaining 29 test cases were
considered non-invariant and were therefore targets for adap-
tation. The RDM simulation was also instrumented to enable
run-time monitoring of system and environmental conditions
that are not typically available to RDM sensors. Examples
include monitored variables that store data regarding the RDM
decision-making logic and data structures that maintain the
state of all objects within the simulation environment over
time.

We compared and evaluated adaptive test plans generated by
Proteus for each SAS configuration with a manually-derived
test plan (hereafter the “Control”) that did not provide run-
time adaptation capabilities. The Control test plan contains a
single test suite that comprises all test cases from the input
test specification and only executes the test cases that satisfy
their execution requirements (i.e., conditions necessary for
execution were met). According to the IEEE standard, a test
case must define the conditions that must be true for the test
to be successfully executed [29]. The intent of the Control test
plan is to provide coverage of all possible reconfigurations that
may be performed at run time by the RDM. Moreover, Proteus
invoked Veritas as necessary for fine-grained test case pa-
rameter adaptation. For statistical purposes, we conducted 50
experimental treatments, and, where applicable, plotted mean
values with corresponding error bars or deviations. Moreover,
we use the Wilcoxon-Mann-Whitney U-test to determine if
statistical significance exists between two data samples, as we
do not assume normality of data.

B. Run-Time Test Plan Adaptation

For this experiment, we define the null hypothesis H0 to
state that “there is no difference between a Proteus adaptive
test plan and a manually-derived test plan.” Moreover, we
define the alternate hypothesis H1 to state that “there is
a difference between a Proteus adaptive test plan and a
manually-derived test plan.”

Figure 4 presents boxplots of the number of test cases that
should not have been executed (hereafter termed “irrelevant”)
between a Proteus adaptive test plan and a manually-derived
test plan. A test case is considered to be irrelevant if its rele-
vance value (see Equation 2) equals 0.0. For those test cases
designated as irrelevant, the difference between the measured
and expected values is large, indicating that the test case is
no longer relevant to its operating context. Figure 4 shows
that Proteus significantly reduces the amount of irrelevant
test cases executed in comparison to those executed under a
manually-derived test plan (p < 0.05).

Testing activities were further analyzed to monitor the
amount of false positive test cases, or instances where test
case relevance falls within [Threshold, 1.0] and its correlated
utility value equals 0.0 (see Section III-A). Figure 5 illustrates
how Proteus significantly reduces the amount of false positive
test results as compared to testing with the manually-derived
test plan (p < 0.05). These results indicate that testing with
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Fig. 4. Cumulative number of irrelevant test cases executed for each
experiment.

adaptive test plans can reduce the amount of false positive test
results, thus reducing the need for spurious test adaptation and,
moreover, reducing the burden of unnecessary analysis by the
SAS test engineer.
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Fig. 5. Cumulative number of false positive test cases for each experiment.

Figure 6 shows how Proteus also significantly reduces the
amount of false negative results, or instances when test case
relevance is calculated to be within [0.0, Threshold) while its
correlated utility value is greater than 0.0 (see Section III-A),
that were encountered during testing (p < 0.05). This result
indicates that Proteus adaptive test plans assist in reducing
the amount of run-time testing adaptations required for the



testing framework, thereby reducing the overall cost of testing
the SAS and the amount of analysis required by an SAS test
engineer.
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Fig. 6. Cumulative number of false negative test cases for each experiment.

Lastly, the total number of executed test cases were recorded
to provide a measure of the overall impact of run-time testing
to an SAS. Particularly, we demonstrate that Proteus signifi-
cantly reduces the amount of executed test cases per testing
cycle by ensuring that only relevant test cases are executed,
as shown in Figure 7. This figure illustrates that Proteus can
reduce the amount of required effort by a testing framework
at run time (p < 0.05).
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Fig. 7. Cumulative number of executed test cases for each experiment.

The results presented in Figures 4 – 7 enable us to reject
the null hypothesis H0 and determine that a clear difference
exists between Proteus adaptive test plans and a manually-
derived test plan. Moreover, these results enable us to accept
the alternate hypothesis H1, based on the assumption that the
manually-derived test plan was based on operating conditions
that the RDM generally experiences. Therefore, these results
suggest that Proteus adaptive test plans can provide assurance
that test cases remain relevant to changing operating conditions
due to uncertainty.

Threats to validity. The research presented in this paper
is intended as a proof of concept to determine the feasibility
of using Proteus for managing and adapting run-time testing
activities. One threat to validity is if Proteus will achieve
similar results in a different problem domain involving self-
reconfigurations. Another threat to validity occurs in the
validity of the input test specification, as it must be fully
comprehensive to enable complete coverage of the system
requirements for testing assurance to be provided. Finally,
another threat to validity is that the experimental results pre-
sented within this paper focus on increasing testing relevance
rather than focusing on test case failures to uncover faults in
the system.

C. Impact of Run-Time Testing

Run-time testing provides a valuable layer of assurance
for an SAS. However, the relative impact that a testing
framework imparts upon the SAS must also be considered
when performing run-time testing. While research has been
performed with providing assurance at run time beyond or
complementary to testing techniques [34], [35], [36], [37],
[38], the direct impact that testing at run time has on an SAS
has yet to be explored. The addition of testing activities can
require additional processing time, extra memory overhead,
and unexpected changes to SAS behavior. To this end, we
analyzed how our run-time testing framework impacts an SAS
at run time relative for the following conditions:

• (S1): All run-time testing activities enabled (i.e., Proteus
and Veritas enabled)

• (S2): Run-time testing disabled (i.e., Proteus and Veritas
disabled)

• (S3): Run-time testing removed (i.e., Proteus and Veritas
data structures and functions removed from SAS code-
base)

(S1) executes the RDM with all run-time testing activities
enabled, including test case execution, Proteus adaptive test
plan adaptation, and Veritas test case parameter value adapta-
tion. (S2) does not perform run-time testing, however the data
structures and functions required by the framework are still
instantiated by the SAS. Lastly, (S3) completely removes the
run-time testing framework from the SAS.

SAS performance can be quantified based upon two key
metrics: total execution time and memory footprint. We next
provide the method for which we measure each metric, as well
as the observed result, where the presented result is the mean
of 50 experimental treatments.



Total execution time: In simulation, the SAS executes for
a set amount of timesteps and therefore the total execution
time can be measured. To this end, we measure the total
execution time of the function that is responsible for exe-
cuting the complete SAS simulation. Particularly, we use the
cProfile Python package to measure the cumulative time
that the simulation execution function requires. Measuring the
execution times of a deterministic SAS instrumented with run-
time testing and with testing disabled can then provide a point
of comparison for any extra time used to perform run-time
testing.

(S1) required a mean execution time of 23.03 seconds, (S2)
required 13.901 seconds, and (S3) required 13.785 seconds.
A significant different exists between (S1) and both (S2)
and (S3), indicating that performing run-time testing requires
significantly more time for the simulation to complete than
either disabling or removing run-time testing from the RDM
application (p < 0.05).

Memory footprint: Extra memory may be consumed when
instrumenting an SAS with a run-time testing framework.
Depending on the hardware used to support the SAS, the
extra memory cost may be prohibitive, particularly in em-
bedded systems where memory is limited. Given that the
RDM application has been implemented in Python, we use the
resource package to examine the total amount of memory
consumed throughout execution.

With respect to memory footprint, (S1) required 65.324
mb, (S2) required 65.332 mb, and (S3) required 65.020 mb.
As such, no significant difference in memory overhead was
incurred between each testing state (p > 0.05).

While execution time and incurred memory costs are rel-
atively straightforward to quantify, examining differences in
SAS behavior is less obvious. To this end, we define two key
metrics for quantifying behavior: requirements satisficement
and behavioral function calls. Each of these metrics are next
described in turn.

Requirements satisficement: We first examine the extent
to which software requirements are satisficed during execution
to examine the impact that testing may impose upon an SAS.
Particularly, we monitor utility values calculated based upon
the RDM goal model (c.f., Figure 1) to determine if any
difference occurs when run-time testing is performed on an
SAS. Given that a utility value is required to be within a
range of [0.0, 1.0], any difference in behavior can be identified
based on a comparison of the utility values that quantify goal
satisficement.

Here, we average the calculated utility values across all
timesteps of RDM execution into a single value to represent
overall goal satisficement. On average, (S1) yielded a mean
utility value of 0.7717, (S2) yielded 0.7656, and (S3) yielded
0.7656. These results, while exhibiting a difference in their
respective means, are not statistically significantly different
from each other overall (p > 0.05), resulting in the conclusion
that our testing framework does not significantly impact SAS
behavior.

Next, we present the average number of utility violations
throughout RDM execution. (S1) incurred 830.6 violations,
(S2) incurred 875.0 violations, and (S3) incurred 869.7 viola-
tions. Statistically, performing run-time testing does not incur
significantly more utility violations as compared to disabling
or removing run-time testing (p > 0.05).

While the presented results pertaining to requirements sat-
isficement are not statistically significant, a clear difference
exists in the presented mean values. As such, we examined
RDM execution traces to determine why this difference occurs.
To this end, we found that, while no difference exists in the
operating context between all three testing states, a minor dif-
ference in execution behavior does occur. Specifically, utility
functions sample data provided by the RDM each timestep.
When testing is enabled or available, the real time at which
utility values are calculated will be slightly delayed by the
extra time required to perform testing activities, resulting in
a sampling of different RDM environmental states. As such,
a difference in calculated utility values can occur as the
operating context is slightly different.

Behavioral function calls: We also quantify behavioral
performance based upon the number of behavioral function
calls invoked. We define a behavioral function call as a
function identified by the SAS engineer as having an integral
impact on SAS behavior. For the purposes of this research, we
monitor the number of self-reconfigurations performed by the
SAS, as a self-reconfiguration can create a major divergence
in system behavior.

(S1) performed 23.0 reconfigurations, (S2) performed 17.28
reconfigurations, and (S3) performed 19.16 reconfigurations.
Again, run-time testing does not incur significantly more
adaptations than were found by disabling or removing testing
(p > 0.05). These results, coupled with the results calculated
based on utility values and utility violations, indicate that our
testing framework does not introduce significant behavioral
change to the RDM application.

The experimental results presented in this section suggest
that run-time testing only significantly impacts an SAS in the
amount of execution time required, whereas memory over-
head and behavior are not significantly impacted by run-time
testing. We further analyzed our run-time testing framework
and determined that the extra execution time is a largely a
result of overhead introduced by our testing framework rather
than run-time test execution and adaptation. As such, we are
exploring optimization strategies, such as parallelization of
testing activities, alongside this research.

V. RELATED WORK

This section describes related work in run-time testing,
search-based software testing, test plan generation, and test
case selection.

A. Run-Time Testing

While testing software at design time provides assurance
that a system satisfies its requirements specification, testing
at run time can provide assurance that the system continually



satisfies requirements in unexpected situations. Run-time test-
ing has been successfully implemented by recording traces of
the production system to a secondary computer. The traces
are then examined in parallel for faults [33]. Agent-based
approaches have also been leveraged as a means for testing
a system at run time [8]. Run-time testing has been proposed
as a proactive approach to facilitate run-time adaptation of
service-based systems [39]. Moreover, a roadmap of traits and
properties that are desirable for testing adaptive systems at
run time has been previously enumerated [40]. While each of
these approaches implement or propose some form of run-time
testing, Proteus focuses on maintaining test plan and test case
relevance at run time as system and environmental conditions
change in order to minimize the number of executed irrelevant
test cases for SASs.

B. Search-Based Software Testing

Search-based software testing applies search-based tech-
niques, such as simulated annealing and evolutionary com-
putation, to the field of software testing. As search-based
techniques explore the available solution space, they are a
natural fit in areas such as automated test case generation,
with examples including application to model-based testing,
mutation testing, regression testing, and structural testing [28],
[41], [42]. Veritas leverages a run-time evolutionary algorithm
to provide online evolution and search-based software testing
capabilities [4], whereas the previous approaches search for
solutions at design time. Online evolution provides the dis-
tinct advantage of facilitating adaptation under live conditions
throughout execution, rather than requiring offline bug fixes
or code optimizations to mitigate unforeseen circumstances.

C. Test Plan Generation

Automated generation of test plans has been extensively
studied. One such approach uses requirements and formal
grammars to automatically define a test plan [15]. In this
approach, a requirements specification is converted to a finite
state automata (FSA), a grammar is derived from the FSA, and
then a set of test plans are generated from the grammar. The
test plans are then executed throughout the software testing
cycle. In contrast, Proteus-generated test plans can be gener-
ated at run time. Automated planning has also been applied to
graphical user interface (GUI) testing [43]. In this approach,
artificial intelligence techniques are used to anticipate actions
taken by the users of a GUI, resulting in a set of testing
goals. Upon completion, the controlling algorithm generates
a partially-ordered plan for realizing the testing goals, and
then generates a set of related test cases. In comparison,
our approach automatically generates a test plan at run time
by leveraging SAS configuration information to determine
which test cases are relevant to each operating context, thereby
bypassing expensive decision or learning mechanisms.

D. Test Case Selection

Automated techniques for selecting and prioritizing test
cases have been previously surveyed within the search-based

software engineering domain [28], where selection is con-
cerned with selecting a representative set of test cases, and
prioritization involves optimizing the order of test case execu-
tion. While the surveyed techniques tend to focus on design-
time optimizations, Proteus instead selects test cases at run
time. Tropos [8] is an implementation of a multi-agent system
that provides a testing agent to continuously execute test cases.
In this approach, test cases are randomly selected based upon
current operating conditions. Conversely, Proteus generates
test plans targeted towards each SAS configuration, rather than
relying on random test case selection.

VI. CONCLUSION

In this paper, we have presented Proteus, a framework for
adaptive run-time testing. Particularly, Proteus manages test
suite and test case adaptation. Test suite adaptation is enabled
through the use of adaptive test plans, where an adaptive
test plan comprises a default test suite and automatically
generated suites derived from the default test suite. Proteus
selects a particular test suite based upon identified operating
conditions for the execution of run-time test cases. Moreover,
Proteus manages test case adaptation through invocation of
Veritas, a run-time evolutionary approach for evolving test case
parameter values. Both types of adaptation are used to ensure
that both test plans and test cases remain relevant to their
current operating context. We have demonstrated Proteus on
an RDM application that was required to replicate data across
a network. The RDM network was subjected to uncertainty
in the form of random network link failures, data mirror
failures, and dropped or delayed messages. Experimental re-
sults demonstrate that adaptive test plans provide a higher
degree of relevance than a manually-derived test plan. Future
work includes application of Proteus to other SAS application
domains, investigation into using search-based techniques to
derive a collection of adaptive test plans at design time,
and automatically defining default test suites based on SAS
requirements specifications.
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W. Schäfer, R. Schlichting, D. Smith, J. Sousa, L. Tahvildari, K. Wong,
and J. Wuttke, “Software engineering for self-adaptive systems: A
second research roadmap,” in Software Engineering for Self-Adaptive
Systems II, ser. Lecture Notes in Computer Science, R. de Lemos,
H. Giese, H. A. Müller, and M. Shaw, Eds. Springer Berlin Heidelberg,
2013, vol. 7475, pp. 1–32.

[41] M. Harman, P. McMinn, J. T. Souza, and S. Yoo, “Search based software
engineering: Techniques, taxonomy, tutorial,” in Empirical Software
Engineering and Verification, ser. Lecture Notes in Computer Science.
Springer Berlin Heidelberg, 2012, vol. 7007, pp. 1–59.

[42] P. McMinn, “Search-based software testing: Past, present and future,” in
Software Testing, Verification and Validation Workshops (ICSTW), 2011
IEEE Fourth International Conference on, 2011, pp. 153–163.

http://doi.acm.org/10.1145/2025113.2025147
http://dx.doi.org/10.1007/978-3-540-89897-9_11


[43] A. M. Memon, M. E. Pollack, and M. L. Soffa, “Hierarchical gui
test case generation using automated planning,” IEEE Transactions on
Software Engineering, vol. 27, no. 2, pp. 144–155, 2001.


