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Abstract—Self-adaptive systems (SAS) must frequently con-
tinue to deliver acceptable behavior at run time even in the face
of uncertainty. Particularly, SAS applications can self-reconfigure
in response to changing or unexpected environmental conditions
and must therefore ensure that the system performs as expected.
Assurance can be addressed at both design time and run time,
where environmental uncertainty poses research challenges for
both settings. This paper presents empirical results from a case
study in which search-based software engineering techniques
have been systematically applied at different levels of abstraction,
including requirements analysis, code implementation, and run-
time validation, to a remote data mirroring application that
must efficiently diffuse data while experiencing adverse operating
conditions. Experimental results suggest that our techniques
perform better in terms of providing assurance than alternative
software engineering techniques at each level of abstraction.

I. INTRODUCTION

A self-adaptive system (SAS) can reconfigure at run time in
response to changing system and environmental conditions [1],
[2], [3], [4] and may face unexpected conditions for which it
was not explicitly designed [5], [6], [7]. Examples of SAS re-
configurations include selecting a new configuration of system
parameters, adapting run-time behavior, or selecting different
modes of operation. Moreover, providing assurance for an SAS
at different phases of the software life cycle attempts to ensure
that the system will behave according to its requirements.
However, uncertainty in both the system configuration and
environmental parameters may cause design-time decisions,
such as elicitation of requirements or derivation of test cases,
to no longer reflect the operating context in which the SAS
operates [8], [9]. In particular, uncertainty in the system
configuration can be a result of partially informed decisions
or assumptions regarding SAS requirements or adaptations to
the SAS as a result of a reconfiguration. Uncertainty in the en-
vironmental parameters can be a result of a misunderstanding
of the execution environment. Previously, we have introduced
a suite of search-based techniques to address assurance at
different levels of SAS abstraction. More specifically, we
presented AutoRELAX [10], [11] to address requirements-based
assurance, Fenrir [12] to target code-based assurance, and
Proteus [13] and Veritas [14] to address assurance via run-time
adaptive testing. This paper describes an empirical study to
illustrate how we systematically applied each of our techniques

to the same application at design time and run time to provide
assurance at different levels of abstraction.

In general, it is difficult for an engineer to fully anticipate
all conditions that an SAS may experience throughout its life-
time [1], [3], [4], [5]. To this end, different techniques, some of
which leverage search-based heuristics, have been developed
for verifying and validating an SAS at both design time [15],
[16], [17], [18], [19], [20] and run time [18], [21], [22],
[23], [24], [25], however these techniques generally evaluate
requirements with respect to design-time decisions and may
not consider unexpected changes to the SAS operating context.
As such, techniques for enabling SAS run-time assurance are
required to ensure that requirements are robust, that the code
has been implemented correctly, and that the SAS behaves
according to its requirements at run time.

This paper presents results from an end-to-end empirical
study in which assurance is addressed at the requirements,
implementation, and run-time testing levels for an SAS using
search-based techniques. To this end, we overview and present
results from AutoRELAX, Fenrir, and Proteus, respectively.
AutoRELAX is a requirements-based assurance technique for
introducing flexibility into a system goal model using a
genetic algorithm [10], [11]. Fenrir is a code-based assurance
technique for exploring how an SAS may exhibit different
behaviors in uncertain environments using novelty search [12].
Proteus is a framework for performing run-time test adapta-
tion [13], [14]. Combined, these techniques address assurance
for an SAS at three different levels of abstraction.

To this end, we applied each technique to a remote data
mirroring (RDM) network application provided by industrial
collaborators [26], [27], where RDM is a data protection
technique for maintaining data availability and accessibility,
to enhance assurance in response to uncertainty. In particular,
the RDM network comprises a set of physically remote data
mirrors, each of which are connected by network links, tasked
with diffusing data to each data mirror connected to the
network. As such, the RDM is subject to network uncertainty
in the form of dropped or delayed messages, random network
link failures, and unexpected damage to RDM sensors. The
RDM application has been modeled as an SAS, and as such,
can self-reconfigure to mitigate these uncertainties. Possible
reconfigurations include changes to the network topology or



updates to data propagation techniques at individual data
mirrors (i.e., asynchronous vs. synchronous propagation).

Experimental results suggest that applying each of our
techniques at different stages of SAS development can provide
specific improvements over existing or manual approaches to
ensure that the system performs according to its requirements.
The remainder of this paper is structured as follows. Sec-
tion II overviews relevant background information, including
the RDM application, goal-oriented requirements engineering,
and the RELAX specification language. Following, Section III
describes each of our assurance techniques. Section IV then
presents our experimental results at each level of SAS abstrac-
tion. Lastly, Section V presents our conclusions and discusses
future work.

II. BACKGROUND

This section describes the RDM application, goal-oriented
requirements engineering, and the RELAX specification lan-

guage.
A. RDM Application

This section presents the RDM application obtained from
an industrial collaborator [26], [27]. RDM is a data protection
technique that prevents data loss and maintains availability by
storing copies of data on physically remote servers (i.e., data
mirrors). An RDM can provide continuous access to data by
replicating data to data mirrors and moreover can ensure that
data is not lost or damaged. If an error or failure occurs to a
data mirror, then recovery is enabled by requesting a new copy
of the affected data or reconstructing the data as provided by
another data mirror. The RDM must also minimize consumed
bandwidth and make certain that distributed data is not lost or
corrupted to enable assurance.

To mitigate uncertainty, the RDM can reconfigure at run
time to tolerate dropped messages, delayed messages, and net-
work link failures. Each network link within the RDM network
incurs a cost in terms of budget (i.e, monetary cost to activate
a network link) and performance (i.e., throughput, latency, and
loss rate). These metrics, in turn, summarize the performance
and reliability of the RDM network. In addition, the RDM can
reconfigure in terms of network topology and data propagation
protocols. Network topology can be reconfigured by activating
and deactivating network links, and data propagation for each
individual data mirror can be defined as asynchronous or
synchronous. Asynchronous propagation collects updates at
the transmitting data mirror and periodically transmits data
to the receiving mirror. Synchronous propagation ensures that
the receiving mirror receives and writes incoming data prior
to completion at the transmitting data mirror. The RDM can
be modeled as an SAS application based on its ability to
reconfigure at run time [28].

B. Goal-Oriented Requirements Engineering

Goal-oriented requirements engineering (GORE) is a graph-
ical approach to capturing high-level objectives and constraints
that a system must satisfy and can be used to guide the

elicitation and analysis of requirements. Specifically, a func-
tional goal declares a service that must be provided, a non-
functional goal imposes a quality constraint, a safety goal
declares a critical objective that must always be satisfied to
mitigate dangerous situations, and a failsafe goal specifies a
safe fallback state in case of failure [29]. Furthermore, goals
may be designated as invariant (i.e., “Maintain” or “Avoid”
goals), requiring that they must always be satisfied, or non-
invariant (i.e., “Achieve” goals), indicating that they may be
temporarily unsatisfied. Moreover, safety and failsafe goals are
always considered to be invariant to ensure the continuing
safe operation of the SAS. A goal can be measured using
utility functions that quantify run time satisfaction, yielding a
normalized value that quantifies goal satisfaction [30].

GORE decomposes high level goals into finer-grained sub-
goals with a directed acyclic graph [31], where each subgoal
must be satisfied for its parent to also be satisfied. KAOS [31]
is an approach for systematically refining goals using AND
and OR refinements, continuing until each goal has been
assigned to an agent. Leaf-level goals are considered to be
requirements. Figure 1 presents the left half of the RDM goal
model. For our implementation of the RDM application, the
goal model acts as both a requirements specification and as a
model for quantification of RDM run-time behavior.
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Fig. 1. Left half of RDM goal model (excerpted for brevity).

C. RELAX Specification Language

RELAX [5], [7] is a requirements specification language
used to identify and assess sources of uncertainty. In particular,
RELAX uses fuzzy logic functions to capture uncertainty in
requirements, adding flexibility in terms of how and when
a requirement can be satisfied. For instance, Goal (F) in
Figure 1 will be violated if a network link fails, causing the
RDM network to become partitioned. As such, the addition
of a RELAX operator that tolerates a transient or temporary
network partition provides flexibility for the RDM to continue
to satisfy its key objectives while minimizing the need to re-
configure, thereby reducing the cost of adaptation to the SAS.
RELAX operators can only be applied to non-invariant goals,
as invariant goals are precluded from adaptation. Table I lists



the RELAX operators used in this paper. For example, Goal (F)
can be RELAXed to become “Achieve [Network Partitions AS
CLOSE AS POSSIBLE TO 0],” thereby tolerating a transient
network partition.

TABLE I
RELAX OPERATORS

Temporal Operators ]
AS EARLY AS POSSIBLE

AS CLOSE AS POSSIBLE TO [frequency]
AS LATE AS POSSIBLE

Ordinal Operators |
AS FEW AS POSSIBLE

AS CLOSE AS POSSIBLE TO [quantity]
AS MANY AS POSSIBLE

III. ASSURANCE TECHNIQUES

This section overviews AutoRELAX, Fenrir, Proteus, and
Veritas.

A. AutoRELAX

AutoRELAX [10], [11] is a design-time technique for auto-
matically providing requirements-based assurance for an SAS.
Specifically, AutoRELAX uses a genetic algorithm to explore
the solution space of possible combinations of RELAX oper-
ators as applied to a system goal model. AutoRELAX searches
for a RELAXed goal model based on three criteria. First,
the RELAXed goal model must minimize SAS adaptations
to reduce cost, either in terms of budget or system impact
(c.f., Equation 1). Second, AutoRELAX must minimize the
number of RELAX operators to reduce needless flexibility in
system requirements (c.f., Equation 2). For example, Figure 1,
Goal (E) could be RELAXed to state “Achieve [Minimum
Number of Network Links Active AS LATE AS POSSIBLE]”
to introduce flexibility in when Goal (E) is satisfied, as a
transient network partition may require that additional network
links be activated. However, too many applied RELAXations
may cause the SAS to be unnecessarily flexible. Third, the
invariant requirements must always be satisfied, otherwise
the goal model is considered a failure (c.f., Equation 3).
Collectively, these three objectives, aggregated into a single
fitness value (c.f., Equation 3), guide the search process
towards a RELAXed goal model that is optimized to mitigate
uncertainty in both the system configuration and environmental
parameters at the requirements level.
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FF,, 1.0 — ey
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0.0 else.
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B. Fenrir

Fenrir [12] is a design-time technique for automatically
exploring how an SAS reacts to uncertainty at the imple-
mentation level. In particular, Fenrir uses novelty search [32]
to generate a suite of operating contexts (i.e., combinations
of system and environmental parameters) that cause an SAS
to exhibit different behaviors at run time. Fenrir generates
an execution trace that represents SAS execution, including
functional behaviors and paths of reconfiguration, in response
to each individual operating context. Fenrir then measures
the differences in execution between each generated execu-
tion trace to determine which operating context yielded the
most diverse behaviors. An SAS engineer can then examine
the resulting set of execution traces to determine if the
SAS reacted appropriately to its operating context, possibly
uncovering latent errors or feature interactions in the SAS
codebase. Moreover, as each operating context is paired to an
execution trace, the output generated by Fenrir can provide
a representative overview of SAS behavior in response to
uncertainties posed within each operating context.

C. Proteus and Veritas

Proteus [13] and Veritas [14] are techniques that address
assurance at run time by performing adaptive, run-time testing
for test suites and test cases, respectively. Testing is adapted
at run time to reflect changing conditions, as test suites and
test cases derived at design time may no longer be applicable
as a result of unexpected environmental changes or SAS re-
configurations. To this end, Proteus is a managing framework
for performing run-time testing, including text execution and
coarse-grained test suite adaptation. Proteus invokes Veritas
to perform fine-grained test case parameter value adaptation at
run time. Veritas is a search-based technique that optimizes test
cases at run time using an online evolutionary algorithm [33].

Both Proteus and Veritas perform run-time adaptation to
ensure that test suites and test cases, respectively, remain
relevant to changing operating contexts experienced by the
SAS. As test cases typically exhibit a pass or fail behavior, we
define a test case relevance value to quantify how applicable
test cases are to their operating context, where the relevance
value shows the distance between the observed and expected
values of the test case. A sample relevance calculation is
shown in Equation 4:

|valueobserved - Ualueempected|

|valueezpectﬁd + valuevariance|

@

relevancerc, = 1.0 —

where valuegpserveq 1S the observed value of the test
case, valueezpected 15 the test case expected value, and
valueygrignee 1S the maximum value that the test case may
take, as defined by the test engineer, to ensure that its relevance
value remains normalized on [0.0,1.0]. Moreover, the test
engineer must correlate each test case to at least one goal
in the goal model for run-time validation to ensure that test
adaptation does not result in an invalid test case. The relevance



value shown in Equation 4,' coupled with run-time monitoring
of the satisfaction of the correlated goal(s),” determines if an
executed test case is a:

o True positive: Test has passed successfully (i.e.,
relevancerc, > 0.75, goal satisfied). No test or SAS
adaptation is required.

o True negative: Test has failed successfully (i.e.,
relevancerc, < 0.75, goal violated). No test adaptation
is necessary, however the SAS requires reconfiguration.

« False positive: Test has passed incorrectly as the SAS is
experiencing an error (i.e., relevancerc, > 0.75, goal
violated). Test adaptation is required to realign the test
with the operating context. Moreover, the SAS requires
reconfiguration to resolve the error.

o False negative: Test has failed incorrectly as the SAS
is not experiencing an error (i.e., relevancerc, < 0.75,
goal satisfied). Test adaptation is required to realign the
test with the operating context.

Proteus performs coarse-grained adaptation by adapting test
suites at run time to reduce the impact that run-time testing
can have on an SAS. Specifically, an SAS engineer defines
a default test suite for each operating context and Proteus
derives new test suites at run time based on the results of run
time testing. Test cases that are true positives are deactivated
from execution, as they do not require re-validation. True
negatives, false positives, and false negatives remain active
and are continuously executed throughout SAS execution.

Upon detection of a false positive or false negative, Proteus
invokes Veritas to adapt the test case parameter values as
the test case has become invalid with respect to its operating
context. Veritas executes the (1+1)-ONLINE evolutionary al-
gorithm [33] to search for an optimal test case expected value
with respect to the current operating context.

The adaptation capabilities of Proteus and Veritas provide
two key benefits. First, coarse-grained adaptation can reduce
the overall impact of executing test cases at run time by mini-
mizing the amount of test cases executed. Second, fine-grained
adaptation maximizes the overall relevance of executed test
cases. Together, Proteus and Veritas enable run-time adaptive
testing for an SAS.

IV. EXPERIMENTAL RESULTS

This section describes the experimental setup and presents
results from applying AutoRELAX, Fenrir, and Proteus with
Veritas to the RDM application.

A. Experimental Setup

For this paper, the RDM application was implemented as
a completely connected graph, where each node in the graph
represented a data mirror and each edge represented a network
link. To establish statistical significance, we performed 50 ex-
perimental treatments. For each treatment, the RDM network
comprised between 15 and 30 data mirrors and was required to

'For this paper, a relevance threshold of 0.75 was selected to indicate a
passing test case.
2A goal is considered violated if its utility value equals 0.0.

disseminate between 100 and 200 messages. Lastly, the RDM
simulation was executed for 300 timesteps.

The RDM network was subjected to uncertainties within
its configured parameters and in the environment in which it
executed. Possible uncertainties included randomly dropped or
delayed messages, network link failures, and random failures
to data mirrors. The RDM network could reconfigure in terms
of updates to the network topology or data mirror propagation
parameters to mitigate uncertainty.

The RDM goal model comprised 23 goals, 2 of which
were designated invariant and therefore were precluded from
RELAXation. The remaining 21 goals were designated non-
invariant and therefore could be RELAXed. The RDM test
specification comprised 36 test cases in total, where 7 test
cases monitored invariant conditions and were precluded from
adaptation, and 29 test cases monitored non-invariant con-
ditions and could be adapted by Veritas. The RDM simula-
tion was also augmented to report system and environmental
conditions not typically available to RDM sensors. Examples
include monitoring internal variables that participate in the
RDM reconfiguration engine and data structures that maintain
all objects within the simulation environment.

We compared and evaluated each technique against a
Control experiment in which no adaptation, in terms of the
goal model, test suites, or test cases, was enabled. For each
experiment, we conducted 50 treatments to establish statistical
significance.

B. Experimental Results

First, we applied AutoRELAX to the RDM application to
address requirements-based assurance. We compared AutoRE-
LAXed goal models to a goal model that had been manually-
RELAXed,® and to an unRELAXed goal model (i.e., the
Control). Figure 2 presents boxplots of the average fitness
values calculated for the RDM application, where fitness was
calculated based on the functions presented in Equations 1 —
3. As is demonstrated by these results, AutoRELAX attains a
significantly higher fitness value than can be found with the
manually-RELAXed or Control goal model.

Based on these results, we conclude that AutoRELAX can
generate better configurations of RELAX operators than can
be found by a requirements engineer for this particular ex-
periment. For the remainder of this study, we use the best
RELAXed goal model (hereafter termed “RDMRgrEraxed”)
found by AutoRELAX to enable requirements-based assurance.

We then applied Fenrir to RDMpErAxeq to address code-
based assurance. As such, Fenrir generated a suite of dif-
ferent execution traces in response to novel environments.
We then selected a subset of the resulting RDM traces that
exhibited the largest number of run-time errors for manual
analysis, as the RDM could maximally experience upwards
of several hundred errors depending on the operating context.
Specifically, the RDM was attempting to send messages via

3 An SAS requirements engineer applied an optimal combination of RELAX
operators to the RDM goal model.
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Fig. 2. Fitness values comparison between RELAXed and unRELAXed.
faulty data mirrors, thereby triggering an assertion error. We
then rectified the problem uncovered by Fenrir by ensuring
that a faulty data mirror is never selected for message dis-
tribution (hereafter termed “RDMRELAXed—Fized ). Upon
re-executing RDMRprAxed—Fized» W€ found that, over 50
trials, the number of experienced run-time errors was reduced
to 1 across all environments.

Finally, we addressed assurance at run time by performing
adaptive online testing to RDMRELAXed—Fized USINg Pro-
teus and Veritas. For this experiment, we compared Proteus
and Veritas test results to a Control in which no test suite or test
case adaptation was performed. The objective of performing
run-time test adaptation is to ensure that test cases remain rel-
evant to the operating context, and moreover require that only
relevant test cases are executed to reduce the burden on the
testing framework. Test cases that monitor safety, failsafe, or
invariant requirements are precluded from adaptation to ensure
that invariant conditions are always checked for satisfaction.

Figure 3 presents boxplots of the averaged number of
cumulative irrelevant test cases executed for each experiment,
where an irrelevant test case is no longer applicable to the
operating context (i.e., test case relevance = 0.0). These
plots show that Proteus significantly reduces the amount of
irrelevant test cases that were executed at run time (Wilcoxon-
Mann-Whitney U-test, p < 0.05), indicating that Proteus can
reduce the impact of run-time testing while maintaining the
relevance of test suites.

Figure 4 presents the averaged number of cumulative false
negative test cases executed for each experiment. Proteus
significantly reduces the amount of experienced false negatives
throughout SAS execution (Wilcoxon-Mann-Whitney U-test,
p < 0.05), minimizing the need for test adaptation.

Figure 5 shows the averaged number of cumulative false
positive test cases executed for each experiment. Proteus
significantly reduces the amount of false positives that oc-
curred throughout SAS execution (Wilcoxon-Mann-Whitney
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N
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Fig. 3. Cumulative number of irrelevant test cases for each experiment.
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Fig. 4. Cumulative number of false negative test cases for each experiment.

U-test, p < 0.05), again minimizing the need for excess test
adaptation.

Lastly, Figure 6 shows the average test case relevance calcu-
lations for Veritas-optimized test cases and Control test cases.
Veritas significantly increases test case relevance (Wilcoxon-
Mann-Whitney U-test, p < 0.05), indicating that performing
online adaptation can realign test cases to changing environ-
ments.

The results presented in Figures 3 — 6 demonstrate that
Proteus and Veritas can increase the overall relevance of test
cases in response to uncertainty. Specifically, Proteus assists in
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reducing the number of unnecessary test cases executed, and
Veritas ensures that test case parameter values adapt alongside
the environment.

V. CONCLUSION

This paper has presented an empirical study in which
AutoRELAX, Fenrir, Proteus, and Veritas were applied to an
RDM application to mitigate uncertainty at different levels
of abstraction. AutoRELAX leverages a genetic algorithm to
search for an optimal combination of RELAX operators to

introduce flexibility into a system goal model. Fenrir explores
how different combinations of system and environmental pa-
rameters affect an SAS in its implementation using novelty
search. Proteus and Veritas provide adaptive, run-time testing
capabilities to provide online assurance, where Veritas uses an
online evolutionary algorithm to optimize test case parameter
values. We demonstrated how each of these techniques can
enable assurance for an RDM application that must efficiently
disseminate data throughout the network to maintain data
availability. The RDM experienced uncertainty in the form
of unexpected network link failures, dropped or delayed data
messages, and random data mirror failures. Experimental
results suggest that our techniques enhance overall assurance
for the RDM. In particular, AutoRELAX produced an optimal
combination of RELAX operators to apply to the system
goal model to tolerate requirements-based uncertainty. Fenrir
enabled the identification of a flaw in the RDM codebase.
Proteus ensured that only relevant and necessary test cases
were executed at run time, and Veritas ensured that test cases
remained applicable to changing operating contexts.

Future directions for this work include investigating how
other search-based techniques, such as simulated annealing or
multiobjective optimization, can augment our existing heuris-
tics. Moreover, we intend to introduce further automation
into our techniques, such as automatically inserting logging
statements into the SAS codebase for Fenrir, or automatically
generating default test plans for Proteus based on an SAS
requirements specification. Lastly, we intend to study the
scalability of our approaches as applied to more complicated
goal models specifying real-world applications.
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