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ABSTRACT

A self-adaptive system (SAS) can reconfigure to adapt to
potentially adverse conditions that can manifest in the envi-
ronment at run time. However, the SAS may not have been
explicitly developed with such conditions in mind, thereby
requiring additional configuration states or updates to the
requirements specification for the SAS to provide assurance
that it continually satisfies its requirements and delivers ac-
ceptable behavior. By discovering both adverse environ-
mental conditions and the SAS configuration states that
can mitigate those conditions at design time, an SAS can
be hardened against uncertainty prior to deployment, ef-
fectively extending its lifetime. This paper introduces two
search-based techniques, Ragnarok and Valkyrie, for harden-
ing an SAS against uncertainty. Ragnarok automatically dis-
covers adverse conditions that negatively impact an SAS
by searching for environmental conditions that explicitly
cause requirements violations. Valkyrie then searches for
SAS configurations that improve requirements satisficement
throughout execution in response to discovered adverse en-
vironmental conditions. Together, these techniques can be
used to improve the design and implementation of an SAS.
We apply each technique to an industry-provided remote
data mirroring application that can self-reconfigure in re-
sponse to unknown or adverse conditions, such as network
message delays, network link failures, and sensor noise.
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1. INTRODUCTION

Self-adaptive systems (SAS) generally comprise an adap-
tation engine and a set of known configurations that spec-
ify application parameter values, where the configurations
ensure that the application continually satisfies its require-
ments at run time. Moreover, an SAS can self-reconfigure
at run-time to switch between different configurations in or-
der to respond to changes in the environment. Uncertainty
can impact an SAS by presenting environmental conditions
unanticipated by the engineer [2, 9, 36], causing the SAS to
enter a configuration state previously unknown or untested.
This paper discusses two complementary approaches, the
first of which enables the automated discovery of adverse
SAS environmental conditions, and the second of which au-
tomatically discovers SAS configurations that can be used
to combat those conditions.

Depending on the complexity of an SAS, it may be impos-
sible for an engineer to fully enumerate all possible config-
urations and environments that an SAS may both use and
experience, respectively [3, 4, 28, 32]. To this end, tech-
niques [13, 14] have been previously introduced to enable
the SAS to mitigate uncertainty. Other techniques have
been developed to automatically induce failures in an SAS [1,
24, 25] for code coverage testing. Furthermore, self-healing
systems have been developed to automatically repair them-
selves upon identification of faults or error conditions [6, 16,
17]. As such, additional automated techniques are necessary
to enable the identification of adverse conditions at design
time to assist in minimizing the uncertainty surrounding an
SAS. Moreover, automated discovery of mitigation strategies
for handling such adversity are also necessary. Together, dis-
covery of adverse conditions and mitigation strategies can be
used to harden an SAS in terms of its requirements specifi-
cation or set of configuration states.

Given the enormous possible solution space of different
combinations of system and environmental parameters, and
moreover the unexpected interactions that can occur as a
result of such combinations, an automated approach is nec-
essary for discovering both adverse conditions and configura-
tions of SAS parameters to handle adverse conditions. This
paper introduces two complementary techniques: Ragnarok
and Valkyrie. Ragnarok enables the automatic identification of
environmental conditions that can otherwise break an SAS.
Conversely, Valkyrie automatically identifies SAS configura-
tions that can be used to mitigate those adverse conditions
identified by Ragnarok. When used in tandem, Ragnarok and
Valkyrie can harden an SAS against uncertainty.



Ragnarok leverages evolutionary search to discover envi-
ronmental conditions that explicitly violate system require-
ments. Specifically, Ragnarok searches for combinations of
environmental parameters that cause an SAS to violate both
its nvariant and non-invariant requirements, where a higher
priority is placed upon violating invariant requirements. Mon-
itoring of requirements satisficement requires a set of derived
utility functions to quantify run-time performance [7, 35].
For example, consider a robotic vacuum that must clean a
room. An adverse environment in this example might in-
clude puddles of water that had been spilled, where vacu-
uming the water could damage the internal mechanisms of
the robot. As such, damage to the robot would violate in-
variant safety requirements. To rectify the violated require-
ments and ensure that the SAS continues to deliver accept-
able behavior while experiencing environmental uncertainty,
Valkyrie uses evolutionary search to discover combinations of
system parameters that enable the SAS to satisfy its re-
quirements in the adverse environments that Ragnarok previ-
ously discovered. Continuing the robotic vacuum example,
Valkyrie could generate configurations wherein the robot has
an optimally-configured path planning algorithm to avoid
the puddles of water. Together, Ragnarok and Valkyrie can be
used to identify weaknesses in software requirements with
respect to environmental uncertainty and automatically dis-
cover SAS configurations that mitigate such uncertainties.

Ragnarok and Valkyrie are each demonstrated through ap-
plication to a simulated remote data mirroring (RDM) net-
work [21, 22]. The RDM network must replicate and dis-
tribute data to all data mirrors (i.e., servers) connected to
the network. The RDM network can also experience un-
certainty in terms of network link failures, dropped or de-
layed messages, and non-trustworthy sensor data. Experi-
mental results suggest that Ragnarok can discover environ-
mental conditions that induce significantly more invariant
and non-invariant requirements violations when compared
to randomly-generated environmental conditions. Further-
more, additional results suggest that Valkyrie can discover
SAS configurations that significantly reduce the amount of
invariant and non-invariant requirements violations when
compared to both previously-known and randomized SAS
configurations, as well as increase the overall level of re-
quirements satisficement.

The remainder of this paper is structured as follows. Sec-
tion 2 discusses background information on the RDM ap-
plication, goal-oriented requirements engineering, and ge-
netic algorithms. Section 3 then discusses both the Ragnarok
and Valkyrie techniques in detail. Section 4 overviews and
presents our experimental setups and results, respectively.
Section 5 overviews related work, and Section 6 discusses
the findings presented in this paper and presents future di-
rections for this research.

2. BACKGROUND

This section overviews background material on the RDM
network application, goal-oriented requirements engineer-
ing, and genetic algorithms.

2.1 Remote Data Mirroring Application
Remote data mirroring (RDM) [21, 22] is a data protec-
tion technique that is used for preventing data loss and en-
suring data availability. This technique is enabled by dis-
tributing data replicates to servers in physically remote lo-

cations (i.e., data mirrors). An RDM can be modeled as an
SAS [31] and is configurable in terms of its network topol-
ogy (e.g., minimum spanning tree, redundant topology) and
data propagation parameters (e.g, method and timing of
data distribution). There are two methods of data distribu-
tion that are supported. Synchronous distribution automati-
cally distributes data modifications to all other data mirrors,
while asynchronous distribution batches data modifications
to combine edits made to the data. Asynchronous propa-
gation provides better network performance, however data
can be lost if a data mirror fails. Conversely, synchronous
distribution provides better data protection at the expense
of network performance.

The RDM can respond to uncertainty by performing self-
reconfigurations, where uncertainty can include unexpected
network link failures, randomly dropped or delayed mes-
sages, and noise that can affect link and data mirror sensors.
Each network link also incurs a cost that can have an im-
pact on the overall budget, and moreover has a measurable
latency, throughput, and loss rate. These metrics, combined
with the ability to replicate all messages to all data mirrors,
determine the overall performance of the RDM. Reconfigu-
ration of the RDM includes updating the network topology
or data propagation parameters. Specifically, the RDM can
self-reconfigure by updating its network topology by activat-
ing and deactivating network links. For example, the RDM
can update its topology from a minimum spanning tree to
a redundant topology. Furthermore, the RDM can change
its data propagation protocols on each data mirror between
asynchronous and synchronous propagation. Given its abil-
ity to reconfigure, the RDM can be modeled as an SAS.

For example, Figure 1 presents a sample topology of the
RDM network following exposure to uncertainty. In this
figure, three network partitions exist due to network link
failures (i.e., links between Data Mirrors (5) and (9), and
Data Mirrors (18) and (23)). Network partitions can cause
data distribution to fail as no valid route exists between
data mirrors on different partitions. As a result, the RDM
network can self-reconfigure its topology by activating other
network links. For instance, a link between Data Mirror (9)
and Data Mirror (19) could be activated, thereby remov-
ing the first partition that exists. Likewise, a network link
between Data Mirrors (14) and (15) could be activated, re-
moving the second partition and therefore enabling full data
replication among all connected data mirrors.

2.2 Goal-Oriented Requirements Modeling

Goal-oriented requirements modeling (GORE) is an ap-
proach for specifying objectives and constraints that a sys-
tem must provide and satisfy, respectively, to guide the elici-
tation and analysis of system requirements in a goal-oriented
fashion. The GORE process provides for different types of
goals, including functional, non-functional, safety, and fail-
safe goals. Functional goals specify a service that must be
provided to a system’s stakeholders. Non-functional goals
impose a quality constraint upon delivery of functional ser-
vices. Safety goals specify a critical service that cannot be
violated. Failsafe goals provide a safe fallback state in case
of system failure [20]. Functional goals may additionally be
categorized as invariant (i.e., must always be satisfied) or
non-invariant (i.e., may be temporarily unsatisfied at run
time). Invariant goals are denoted by the keywords Main-
tain or Awoid, and non-invariant goals are denoted by the
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Figure 1: Sample partitioned RDM network.

Achieve keyword. Moreover, safety and failsafe goals are
always considered to be invariant.

GORE modeling decomposes high-level goals into sub-
goals using a directed, acyclic graph [33], where each node
in the graph represents a goal and each edge represents a
goal refinement. KAOS [5, 33] provides an approach for
refining goals using AND and OR refinements. An AND-
refined goal is satisfied if all its subgoals are also satisfied.
An OR-refined goal is satisfied if at least one of its subgoals
have been satisfied. Goal refinement is completed when an
agent has been assigned responsibility for satisfying each
leaf-level goal, where leaf-level goals are considered to be
requirements.

Figure 2 presents a KAOS goal model of the RDM applica-
tion, where Goals (A) and (B) are specified to be invariant,
and all other goals are considered non-invariant. This figure
presents the decomposition of goals, starting with a high-
level goal of maintaining data availability (i.e., Goal (A))
and refining the model to the leaf-level (i.e., Goals (J) —
(W)), where each leaf-level goal must be satisfied by agents
(i.e., Link Sensor, Network Controller, etc.). An example
AND-refinement is shown at Goal (B), where each of its
subgoals (i.e., Goals (D), (E), and (F)) must be satisfied for
Goal (B) to also be satisfied. An OR-refinement is shown at
Goal (H), where at least one of its subgoals (i.e., Goals (S)
and (T)) must be satisfied for it to be satisfied.

Utility functions.

Utility functions are mathematical formulae that can be
used to quantify the level of satisfaction (i.e., satisficement)
of software requirements or behaviors at run time in auto-
nomic computing systems [7, 35]. Utility functions can also
be derived for KAOS goals to determine run-time satisfice-
ment [30]. A utility value of 0.0 generally indicates a vio-
lation, and a value of 1.0 indicates satisfaction. Any value
in between (0.0, 1.0) indicates the degree of satisficement for
that goal or requirement. For example, a utility function has
been derived to quantify Figure 2, Goal (B). Goal (B) can
be evaluated with a function that returns a value of 1.0 if
the cost of operating the RDM network has never exceeded
the provided budget, and a value of 0.0 otherwise.
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Figure 2: KAOS goal model of RDM application.

2.3 Genetic Algorithms

A genetic algorithm is a stochastic, search-based heuris-
tic for exploring solutions for complex optimization prob-
lems [18]. A genetic algorithm typically comprises a popula-
tion, a fitness function, and a set of evolutionary operators
(e.g., crossover and mutation). A population refers to a set
of encoded candidate solutions, where typical solutions can
be encoded in a vector-based representation. A fitness func-
tion evaluates the quality of each candidate solution using
a mathematical formula to guide the search process towards
an optimal solution. Evolutionary operators generate new
solutions, where the crossover operator exchanges parts of
existing solutions to form new solutions, and a mutation op-
erator randomly changes portions of an individual solution
to maintain diversity. This procedure continues until a ter-
mination criterion (e.g., maximum number of generations to
run) is reached and the solution with the best fitness value
is provided as output.

For this paper, double-point crossover and single-point
mutation have been selected as the evolutionary operators.
Figure 3 demonstrates double-point crossover and single-

point mutation, respectively, on a Ragnarok genome. In double-

point crossover, two indices are randomly selected on the
genome to determine which set of genes (i.e., parameters) are
swapped between the two randomly selected parent genomes.
Crossover then creates two new child genomes based on
shared genes from the two parents. In single-point mutation,
a gene within the genome is randomly selected for mutation,
where the particular value is then mutated. Figure 3(a)



presents an example of double-point crossover, where the
third and fourth genes are swapped between Genomes A and
B to create Genomes A’ and B’. Figure 3(b) demonstrates
single-point mutation. In this example, the probability that
a network link failure will occur has risen from 20% to 22%,
while the severity of the failure remains unchanged.

Genome A Genome B
Network Network
link Dropped Data mirror link Dropped Data mirror
failure message failure failur message failure
0.05 ‘ 0.15]0.20 ‘ 0.10 | 0.05 I 0.25|0.15 ‘

0.10 | 0.15 l 0.20
%

Impact

0.25 I 0.03

chance

Genome A’ Genome B’

(a) Example of double-point crossover.

Genome A
Network link Dropped : Data mirror
failure message failure
‘ 0.10| 0.15|0.20 | 0.25 | 0.03 | 0.05 ‘
% —_ .
chance Impact J
| 0.10 | 0.15 0.22 | 0.250.03 | 0.05 |
‘Genome A’

(b) Example of single-point mutation.

Figure 3: Illustration of evolutionary operators.

3. APPROACH

This section introduces the Ragnarok and Valkyrie tech-
niques. First, the assumptions, inputs, and outputs are
stated for each technique. Then, a description is provided
of how each technique is applied to automatically harden an
SAS against adverse conditions.

3.1 Assumptions, Inputs, and Outputs

Both Ragnarok and Valkyrie require three key inputs: a goal
model representing the functional requirements of the SAS,
a set of utility functions that have been derived based on the
goal model for run-time requirements monitoring, and an ex-
ecutable specification or prototype of the SAS. While Rag-
narok and Valkyrie are intended to be domain-independent,
the required inputs to each technique are specific to the ap-
plication domain. Each of these input elements are next
described.

Goal model.

A goal model is required to provide the functional require-
ments of the SAS. For this paper, KAOS goal models [5, 33]
are used, where each goal is designated as invariant (i.e.,
must be satisfied) or non-invariant (i.e., can temporarily be
unsatisfied) by the requirements engineer.

Utility functions.

A set of utility functions must be derived by a require-
ments engineer for run-time monitoring of SAS requirements
satisfaction [7, 30, 35], where each utility function maps to a
KAOS goal and comprises a mathematical relationship that
maps monitoring data to a value within [0.0,1.0]. The utility
value demonstrates how well a given goal is being satisfied
at run time. For example, the satisficement of Goal (A)
(c.f., Figure 2) can be measured by returning a value of 1.0
if the amount of data replicates matches the number of data
mirrors and 0.0 otherwise.

Executable specification.

Both Ragnarok and Valkyrie require an executable specifi-
cation, such as a simulation or prototype, of the SAS. The
simulation applies the set of utility functions to measure run-
time requirements satisfaction. Moreover, the executable
specification is intended to subject the SAS to as wide of a
range of both system and environmental parameters as pos-
sible to fully exercise the SAS, from a requirements perspec-
tive. The requirements engineer must also specify sources of
uncertainty that the SAS may face, including uncertainty in
the system and environment. For example, the RDM appli-
cation may face uncertainty in terms of unexpected message
delays, lost messages, randomly severed network links, and
sensor noise.

3.2 Combined Process

Ragnarok and Valkyrie are intended to be used sequentially
to harden an SAS against uncertainty, where Ragnarok dis-
covers adverse conditions that can negatively impact an SAS,
and Valkyrie generates SAS configurations that can be used
to mitigate those conditions discovered by Ragnarok. Fig-
ure 4 presents a data flow diagram (DFD) that overviews
both techniques together, and each step is next described in
detail. For reference, Steps (1) and (2) comprise the Rag-
narok technique, and Steps (3) and (4) comprise the Valkyrie
technique. Given that both Ragnarok and Valkyrie each use
a genetic algorithm, the evolutionary process is abstracted
into a single DFD and later presented in Figure 7, where the
respective genetic algorithms specifically execute in Step (2)
(i.e., Ragnarok) and Step (4) (i.e., Valkyrie).

(1) Generate Adverse Environments.

Ragnarok uses a genetic algorithm [18] to generate combi-
nations of adverse parameters that specify the sources of en-
vironmental uncertainty, each of which specify a probability
of occurrence and impact to the SAS. Each set of parame-
ters is represented as a genome within a population, where
each genome is represented as a vector of length n. For each
vector, n defines the number of environmental sources of
uncertainty. Figure 5 presents an example genome used by
Ragnarok. Specifically, the provided genome specifies that,
at each timestep of SAS execution, there is a 15% chance
of network link failure, and should this failure occur, up to
10% of all network links will fail. Each genome is instanti-
ated and evaluated within the SAS simulation environment.

The genetic algorithm must be configured by a require-
ments engineer to search for an optimal combination of pa-
rameters. As such, evolutionary operators such as popula-
tion size (i.e., number of genomes instantiated each genera-
tion), crossover and mutation rates (i.e., rate of creation of
new genomes based on recombination and random modifica-
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Figure 5: Genome for Ragnarok genetic algorithm.

tion, respectively), and termination criterion (i.e., number
of generations to evolve genomes) must be specified. More-
over, definition of these parameters relies on domain knowl-
edge or empirical evidence to ensure that both genetic al-
gorithms arrive at an optimal solution. For this paper, the
population size is 50 genomes, the crossover rate is 12.5%,
the mutation rate is 25.0%, and the number of generations
is 15, where these values were selected based on empirical
evidence demonstrating an acceptable rate of convergence to
an optimal solution. After the total number of generations
is reached, Ragnarok outputs the highest performing genome
that specifies the most adverse combinations of environmen-
tal uncertainty. Following the initial configuration of the
genetic algorithm, Ragnarok generates a randomized popula-
tion of genomes for the genetic algorithm to operate upon.
Step (2) next describes how the impact of each genome is
calculated with respect to goal satisficement monitoring.

(2) Compute Fitness and Output Environments.

The genetic algorithm used by Ragnarok optimizes the en-
vironmental sources of uncertainty in such a way that the
number of goal violations are maximized. As such, a fitness
value for each genome is calculated based on three criteria:
maximization of the number of violated non-invariant goals,
maximization of the number of violated invariant goals, and
minimization of average goal satisficement.
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Equations 1 and 2 present equations for calculating the
fitness of a Ragnarok genome.’ FFRragnarok uses a linear
weighted sum to specify the relative importance of each met-
ric, where each weighting coefficient must sum to a value of
1.0. For this paper, anon—inv = 0.25, Qiny, = 0.50, and ague
= 0.25, as maximizing the number of violated invariant goals
is considered more destructive to the SAS than maximizing
the number of violated non-invariant goals or minimizing
average goal satisficement.?

Equation 2 presents the equation for average goal satis-
ficement during execution. Specifically, |valuesytiiity| rep-
resents the number of utility values calculated per timestep
and timestepssim represents the total number of timesteps
specified for the simulation to execute. For the RDM appli-
cation, |valuesytitity| = 26 (i.e., the total number of goals in
Figure 2) and timestepssim = 300.

FFRagnarok =1.0— ((anon—inv * Uiozationsnon—inv)+
(tinw * violationsiny, )+

(1)

(cque * satisficementqye))

where,

> valuesytitity

satis ficementope. = -
|valuesytitity| * timestepssim

(2)

Upon completion of the genetic algorithm, Ragnarok pro-
vides, as output, genome(s) that instantiate sources of un-
certainty that induce adverse behavior in the SAS. This out-
put is then used by Valkyrie (i.e., Steps (3) and (4)) to config-
ure the environment for instantiation of adverse conditions.

(3) Generate SAS Configurations.

Valkyrie uses a genetic algorithm to optimize combinations
of SAS parameters to mitigate the adverse conditions discov-
ered by Ragnarok. The SAS parameters each specify a par-
ticular value that is used to configure the SAS itself. Each
set of SAS parameters is represented as a genome, where
each genome is a vector of length m. For each vector, m
specifies the number of configurable SAS parameters (i.e.,
genes). Figure 6 presents a sample genome used by Valkyrie.
In this example, one configured parameter defines the size of
messages replicated within the RDM network to be 2.5mb.
Configuration of Valkyrie’s genetic algorithm in terms of evo-
lutionary parameters is reused from Step (1) (i.e., population
size, crossover rate, etc.).

(4) Compute Fitness and Output Configurations.

The genetic algorithm used by Valkyrie optimizes the SAS
parameters in order to maximize the overall satisficement
of goals. A fitness value is calculated based on a piecewise
function as shown in Equation 3, where we reuse the defi-
nition of satisficementqve from Equation 2. Specifically, if
a violation occurs in an invariant goal then the fitness score
is 0.0, as the state of the SAS is considered irrecoverable
when an invariant is violated. Otherwise, the fitness score

!For presentation purposes, Equations 1, 2, and 3 abbreviate
invariant (inv), non-invariant (non-inv), simulation (sim),
and average (ave).
2The weighting coefficients were also selected based on em-
pirical evidence gathered during experimentation on the
RDM application.
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Figure 6: Genome for Valkyrie genetic algorithm.

is the average of all calculated utility values (i.e., goal sat-
isficement) over the course of the simulation. This fitness
function is intended to maximize overall satisficement of re-
quirements, and as a result, minimize the number of goal
violations.

0.0
satis ficementaye

if violsiny, >0

FFValkyTie = { (3)

else

Upon completion of the Valkyrie genetic algorithm, a set
of the highest performing SAS configurations are provided
as output. Given that an SAS comprises a collection of con-
figurations (either physically or logically), Valkyrie-generated
configurations can be used to harden the initial SAS config-
uration state (i.e., in production) against those environmen-
tal uncertainties discovered by Ragnarok. Hardening the SAS
can be performed by including the discovered SAS config-
urations in the collection, augmenting base SAS configura-
tions using discovered parameters, or by updating SAS re-
quirements specification to consider the Ragnarok-discovered
environments.

Evolutionary Loop.

We next present the data flow specific to the evolutionary
process. Specifically, Steps (2) and (4) (c.f., Figure 4) can
be expanded to comprise a general evolutionary loop as pre-
sented in Figure 7. This figure is relevant to both Ragnarok
and Valkyrie, however the genomic configurations entering
the loop will either be specific to the environment (i.e., Rag-
narok, Step (2)) or specific to the SAS (i.e., Valkyrie, Step
(4)). Each step is next described in turn.

(A) Evaluate Configurations.

To evaluate the quality of the provided configuration (i.e.,
adverse environments or optimal SAS configurations), each
configuration is instantiated within the provided simulation
environment. An initial population of randomized configu-
rations is received (i.e., as output from Step (1) or Step (3))
and then evolved over the course of the genetic algorithm.
Specifically, the environmental configuration is mapped to
uncertainty parameters specified by the requirements engi-
neer (e.g., probability and impact of network link failure,
probability and impact of delayed messages, etc.), and the
SAS configuration then instantiates the system itself. For
the Ragnarok evolutionary loop, the environmental parame-
ters are being evolved and as such, the SAS configuration
remains static. Conversely, the Valkyrie evolutionary loop
optimizes the SAS configuration while the environmental
configuration, provided by Ragnarok, remains static through-
out the loop. For Ragnarok and Valkyrie, each configuration
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Figure 7: Internal data flow diagram of Ragnarok
and Valkyrie genetic algorithms.

is evaluated based on the fitness criteria specified in Equa-
tions 1 and 3, respectively.

(B) Select Configurations.

Using the fitness values calculated for each genome, the
genetic algorithm selects the highest-performing individuals
from the population. Selection drives the search process to-
wards optimal areas of the overall solution space. In this
regard, Ragnarok and Valkyrie each implement tournament
selection [18], a technique that randomly selects k individu-
als from the population. These k individuals then compete
to determine which survives to the next generation. The
individual with the highest fitness value survives, and the
remaining individuals are discarded.

(C) Generate Configurations.

The evolutionary process then generates new configura-
tions, internal to the evolutionary loop, to ensure that the
population size remains constant. As such, new genomes
are generated based on two-point crossover and single-point
mutation, respectively (c.f., Section 2.3). The intent of the
crossover operator is to ideally construct better genomes
based on parent genomes that already are performing well.
Mutation, however, attempts to introduce diversity into the
population by through random change. Diversity is neces-
sary to ensure that the search procedure does not get stuck
in a local optima, but rather is guided towards a global op-
tima in the overall solution space. This process continues
until the total number of generations is exhausted, at which
point the optimized configurations are provided as output.
For Ragnarok, optimized adverse environments are provided
as output for Valkyrie. For Valkyrie, optimized SAS configu-
rations are provided as output to the requirements engineer.

4. EXPERIMENTAL RESULTS

This section describes the experimental setup and presents
experimental results from applying Ragnarok and Valkyrie to
the RDM application.



4.1 Experimental Setup

For this paper, the RDM network was modeled as a com-
pletely connected graph, where each node represents an RDM
and each edge represents a network link. There were 50 ex-
perimental trials performed for statistical significance. For
each trial, a random number of data mirrors (i.e., within
[15,30]) formed the network. A random number of messages
(i-e., within [100, 200]) were randomly inserted into different
mirrors in the network and were required to be replicated to
all other data mirrors. The simulation was performed over
300 timesteps.

Both system and environmental uncertainty were modeled
in the RDM application. The RDM can experience delays
in message distribution, randomly dropped messages, unex-
pected network link failures, and random noise applied to
both data mirrors and network link sensors. To mitigate
these uncertainties, the RDM network can reconfigure to
ensure that its requirements are continually satisfied. Possi-
ble reconfigurations include changes to the network topology
and updates to data propagation parameters.

This paper presents two experiments. The first experi-
ment explores environmental conditions that adversely af-
fect the RDM application. Using the fitness function pro-
vided in Equation 1, Ragnarok searches for combinations of
environmental parameters that negatively impact the utility
functions derived for the RDM. The resulting sets of envi-
ronmental configurations can then be used to demonstrate
environments in which the RDM application cannot effec-
tively function. For this experiment, Ragnarok-generated en-
vironmental configurations are compared to those generated
by random search, as we do not know specifically which com-
binations of parameters will induce requirements violations
in the RDM application.

The second experiment subjects the RDM application to
the Ragnarok-generated environments in order to search for
combinations of system parameters that can mitigate those
adverse conditions. Specifically, Valkyrie uses the fitness func-
tion provided in Equation 3 to optimize the parameters (e.g.,
number of data mirrors, size of data message, network link
capacity, etc.) that configure the RDM application. Valkyrie-
generated RDM configurations are then compared to config-
urations generated by random search, as we do not explicitly
know which combination of parameters can handle such ad-
verse conditions.

For each experiment, we use the Wilcoxon-Mann-Whitney
U-test to determine if statistical significance exists between
our data samples, given no normality of data is assumed.

4.2 Experimental Results

We next present the experimental results from applying
Ragnarok and Valkyrie to the RDM application.

Ragnarok Experimental Results.

For this experiment, we define the null hypothesis H1p to
state that “there is no difference between an environmen-
tal configuration generated by Ragnarok and a randomly-
generated environmental configuration”. Figures 8 and 9
present boxplots of the average number of invariant and non-
invariant goal violations encountered throughout execution
of the RDM simulation, respectively. These figures demon-
strate that Ragnarok can induce significantly more violations
of both invariant and non-invariant goals in an SAS when
compared to random search (p < 0.05). Moreover, viola-
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Parameter Random | Ragnarok
Prob. data mirror failure 1.4% 3.8%
Prob. network link failure 0.3% 2.9%
Prob. data message dropped 10.3% 16.0%
Sensor fuzz rate 11.4% 8.4%

Table 1: Sample environmental configurations.

tion of any invariant goal (i.e., Figure 2, Goals (A) and (B))
causes total system failure. Therefore, the conditions found
by Ragnarok provide a significantly destructive set of adverse
conditions that the SAS cannot tolerate that may not have
been considered during requirements elicitation. The envi-
ronmental configuration with the highest fitness value (c.f.,
Equation 1) is provided to Valkyrie as output.
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Figure 8: Comparison of RDM invariant goal viola-
tions between Ragnarok and random search.

These figures demonstrate the destructive nature of Rag-
narok. Specifically, Ragnarok generates combinations of envi-
ronmental parameters that induce requirements violations.
For example, Table 1 presents subsets of two environmen-
tal configurations that were generated by random search
and Ragnarok, respectively. As such, a Ragnarok environmen-
tal configuration can specify a higher probability that data
mirrors and network links will fail, and moreover specify
that there is a higher chance that messages will be dropped
during replication. Moreover, there is also a chance that
Ragnarok-generated values will be less adverse than expected
(e.g., the rate at which noise is applied to RDM sensors).
This type of configuration is provided for each source of
environmental uncertainty specified by the requirements en-
gineer.

The parameters discovered by Ragnarok are not strictly
value increases to simply induce violations. Each uncer-
tainty parameter is specified, by the requirements engineer,
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Figure 9: Comparison of RDM non-invariant goal
violations between Ragnarok and random search.

to take on an acceptable range of values prior to evolution.
For example, each Ragnarok-generated value presented in Ta-
ble 1 falls within an acceptable range of values. However,
the combination of such parameters induces requirements
violations. Given the results presented in Figures 8 and 9,
H1p can be rejected, suggesting that Ragnarok-generated en-
vironments are more adverse than randomly-generated envi-
ronments. The following section next discusses how Valkyrie
can automatically mitigate such conditions.

Valkyrie Experimental Results.

For this experiment, we define the null hypothesis H2¢
to state that “there is no difference between an SAS con-
figuration generated by Valkyrie and a randomly-generated
SAS configuration”. Moreover, the environment configura-
tions used for this experiment were generated by Ragnarok.
Figure 10 presents the average fitness values (c.f., Equa-
tion 3) calculated for Valkyrie-generated RDM configurations
and those generated by random search. The boxplots in this
figure demonstrate that Valkyrie can significantly increase the
overall fitness (i.e. goal satisficement) of the RDM applica-
tion when subjected to adverse conditions (p < 0.05).

Next, Figure 11 presents boxplots of the average number
of non-invariant goal violations that occurred throughout
each simulation. While both Valkyrie and random search each
had a minimum number of 10 non-invariant violations, there
are significantly fewer violations that occurred in Valkyrie-
generated configurations (p < 0.05), indicating that Valkyrie
can help to minimize non-invariant goal violations.

Lastly, Figure 12 presents boxplots that show the average
amount of invariant goal violations that manifested through-
out each simulation. As such, Valkyrie-generated configura-
tions significantly minimized the number of invariant goal
violations when compared to random search (p < 0.05).
This result suggests that Valkyrie-generated configurations
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Figure 10: Comparison of average fitness values be-
tween Valkyrie and random search.

can also assist in minimizing invariant goal violations when
experiencing adverse conditions.

Table 2 presents a subset of RDM configurations gener-
ated by random search and Valkyrie, respectively. For ex-
ample, parameters can include the size of messages to be
replicated across the network, the base capacity of all data
mirrors, the overall operating budget to run the RDM net-
work, the number of available data mirrors, and the initial
network topology. In this example, Valkyrie was able to in-
crease overall goal satisficement by lowering the configured
size of messages, increasing the capacity of each data mirror,
and increasing the overall operating budget. Interestingly,
the number of available data mirrors was reduced from 29 to
22, indicating that the increased capacity must be balanced
by reducing the number of mirrors. Moreover, the network
topology remained the same, suggesting that the topology
was not a major factor in goal satisficement for this par-
ticular configuration of environmental parameters. Given
the results presented in Figures 10 — 12, H2p can be re-
jected, suggesting that Valkyrie-generated configurations can
increase the overall effectiveness of the RDM when faced
with highly-adverse environmental conditions.

Parameter Random Valkyrie
Message size 2.44mb 1.68mb
Data mirror base capacity 4.85gb 7.34gb
Budget $401,944.87 | $532,850.52
Number of data mirrors 29 22
Base network topology Grid Grid

Table 2: Sample RDM configurations.
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Figure 11: Comparison of RDM non-invariant goal
violations between Valkyrie and random search.

4.3 Mitigation Strategies for Destructive Un-
certainty

The experiments performed for Ragnarok and Valkyrie demon-

strated the effectiveness of using search-based techniques
for both discovering adverse combinations of environmen-
tal parameters and mitigating those conditions using opti-
mized combinations of SAS parameters. For instance, one
Ragnarok-generated configuration had elevated probabilities
of data mirror failure, dropped messages, and a lower rate
at which sensor fuzz is applied (c.f., Table 1). In this case,
Valkyrie discovered that reducing the size of each message,
increasing the overall capacity of each data mirror, and in-
creasing the overall budget enables the RDM to perform
better than with its original configuration (c.f., Table 2).
Furthermore, Valkyrie discovered that the total number of
data mirrors could be reduced as well, given the increased
capacity of each mirror.

A requirements engineer could then use the information
found by both Ragnarok and Valkyrie to harden the RDM
application prior to deployment. Specifically, the engineer
could augment the requirements specification to consider the
environment(s) found by Ragnarok. Such an approach would
entail adding requirements to specifically mitigate the dis-
covered conditions (e.g., network must be pre-configured to
a specific topology with a set of particular links activated),
or to request a budget increase that can support an increased
operating cost of reconfigured network links when faced with
adversity. Another approach would be to store the Valkyrie-
generated RDM configuration for use if and when the envi-
ronmental conditions are detected. By monitoring its envi-
ronment (i.e., as part of the SAS MAPE-K loop [23]), the
RDM can detect when the conditions discovered by Ragnarok
manifest within its environment. Upon detection, the RDM
could self-reconfigure to use stored, Valkyrie-generated RDM
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Figure 12: Comparison of RDM invariant goal vio-
lations between Valkyrie and random search.

configuration for use in mitigating an environment that had
already been resolved.

Threats to Validity.

This research was a proof of concept to determine the fea-
sibility of both generating combinations of environmental
parameters that specifically break a system and generating
SAS configurations that can mitigate those specific environ-
ments. One threat to validity is if Ragnarok and Valkyrie will
achieve similar results in other application domains, specifi-
cally those that involve scalability concerns. Another threat
to validity involves the manual derivation of the utility and
fitness function coefficients. A third threat to validity lies in
the viability of using the automatically-generated SAS con-
figurations to environments that differ from those generated
by Ragnarok. Lastly, a fourth threat to validity is if Rag-
narok and Valkyrie will achieve similar results when compared
to other search-based techniques (e.g., simulated annealing,
pattern search, etc.).

S. RELATED WORK

This section highlights related work on uncertainty gen-
eration, self-healing systems, and obstacle mitigation.

5.1 Automated Generation of Uncertainty

Ramirez et al. previously introduced Loki [29], a tech-
nique for automatically discovering novel combinations of
parameters for configuring both an SAS and its environ-
ment. Using these parameter combinations, Loki aims to
uncover unexpected or latent errors within the SAS require-
ments specification. Furthermore, Fenrir [15] is a comple-
mentary technique that explores how uncertainty can im-
pact an SAS at the code level by generating combinations of
system and environmental parameters that yield novel exe-



cution traces. Both Loki and Fenrir use novelty search [26] to
explore unique combinations of parameter values. As such,
Ragnarok differs from both techniques in that the solution
space comprises destructive parameters as opposed to novel
parameters. Specifically, Ragnarok is concerned with require-
ments violations rather than requirements interactions, as
Loki and Fenrir do not necessarily discover conditions that
otherwise break the system. Moreover, this paper intro-
duces a complementary technique, Valkyrie, to automatically
mitigate the discovered conditions, whereas both Loki and
Fenrir specified that the requirements engineer manually re-
solve discovered issues.

Research into quantifying and mitigating uncertainty has
recently been the focus of the software engineering commu-
nity [2, 4, 8, 9]. Moreover, a taxonomy of different sources
of uncertainty has recently been published by Esfahani and
Malek [10]. As such, our work attempts to further ex-
amine the issues related to uncertainty by examining both
how it can negatively impact a system as well as provide
automatically-generated mitigation strategies. Etxeberria et
al. have recently performed a sensitivity analysis on how
uncertainty parameters can affect system performance [11].
While this paper does not strictly perform a sensitivity anal-
ysis on the derived utility functions and fitness functions, the
search for parameters that can affect an SAS at its require-
ments level does provide a measure of sensitivity analysis
with respect to configurable system and environmental pa-
rameters.

5.2 Self-Healing Systems

Self-healing systems can automatically repair themselves
based on identification of errors at run time using a ro-
bust adaptation engine. Such systems are very similar to
SASs, however an adaptation in a self-healing system is typ-
ically in response to a perceived fault condition as opposed
to monitored requirements violations. As such, Ghosh et
al. have provided an excellent survey on self-healing sys-
tems [17], including an overview of healing strategies and
a discussion of existing techniques. Dashofy et al. have
introduced a research path for an architecture-based self-
healing system where healing occurs by repairing deficien-
cles in the system’s architecture [6]. Garlan and Schmerl
have also discussed how adaptation in self-healing systems
can be accomplished using a model-based approach, includ-
ing facilities for monitoring, translating monitored values to
the architectural level, updating the architecture, validating
updates, and then performing the repair [16]. Ragnarok and
Valkyrie provide a level of healing within the SAS domain,
wherein Ragnarok serves as a monitoring and fault discovery
mechanism, and Valkyrie serves as an analog for healing the
system. However, both Ragnarok and Valkyrie are concerned
with the requirements level as opposed to the architectural
level.

5.3 Obstacle Mitigation

A set of strategies for identifying, analyzing, and resolv-
ing obstacles to objective satisfaction has been previously
proposed by van Lamsweerde et al. [33, 34]. If an obsta-
cle is unavoidable, then a mitigation strategy can be used
to temporarily tolerate goal violation. As such, Ragnarok
can be used to complement this approach by automatically
identifying environmental conditions that induce goal vio-
lations. Moreover, Valkyrie can be used to complement a
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mitigation strategy by optimizing the SAS configuration for
tolerating adversity. Letier and van Lamsweerde have intro-
duced a probabilistic approach for specifying a probability
that a goal will be satisfied using domain knowledge [27].
However, this approach only considers goals to be satisfied
or unsatisfied, whereas Ragnarok and Valkyrie use a utility-
based approach to quantifying goal satisfaction. Another
approach uses search-based techniques to discover faults in
real-time embedded systems [19]. This approach is similar
to Ragnarok in that environmental conditions are generated
to induce faults, however this approach focuses on black-
box testing of embedded systems, whereas Ragnarok focuses
on validating requirements via utility value monitoring, and
moreover focuses specifically on SASs. Lastly, formal guar-
antees for SAS controllers have been recently proposed by
Filieri et al. [12]. This approach leverages control theory
and verification techniques to provide an SAS that is guar-
anteed to deliver acceptable behavior. Conversely, Ragnarok
and Valkyrie do not specifically provide this guarantee, how-
ever they do provide a measure of requirements validation in
response to uncertainty, specifically in regard to system and
environmental conditions that may not have been accounted
for by the requirements engineer.

6. CONCLUSION

This paper has presented Ragnarok and Valkyrie, two design-
time techniques that can be used together to harden an SAS
against uncertainty. Ragnarok first automatically identifies
environmental conditions that induce requirements viola-
tions in an SAS. Valkyrie can then be used to automatically
identify SAS configurations that can mitigate the discov-
ered conditions. The requirements specification can then
be improved based on adversity identified by Ragnarok, and
the set of available SAS configurations or base SAS con-
figuration can be augmented with Valkyrie-generated con-
figurations. Ragnarok and Valkyrie were each demonstrated
on an RDM network application that was required to repli-
cate data messages across a network of data mirrors. The
RDM could experience uncertainty in terms of dropped mes-
sages, delayed messages, network link failures, and sensor
noise. The RDM could then self-reconfigure to mitigate run-
time uncertainty. Experimental results suggest that Rag-
narok can generate combinations of environmental parame-
ters that can induce significantly more invariant and non-
invariant goal violations than can be found with random
search, and Valkyrie-generated SAS configurations can sig-
nificantly increase goal satisficement and reduce goal viola-
tions than configurations generated by random search. Fu-
ture work includes application of Ragnarok and Valkyrie to
other SAS application domains (e.g., embedded systems and
cloud-based applications), exploration of other search-based
techniques (e.g., novelty search, particle swarm optimiza-
tion), and extension of Valkyrie for run-time generation of
optimal SAS configurations.
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