
Extending Search-Based Software Testing Techniques to
Big Data Applications

Erik M. Fredericks and Reihaneh H. Hariri
Oakland University
Rochester, MI, USA

{fredericks, rhosseinzadehha}@oakland.edu

ABSTRACT
Massive datasets are quickly becoming a concern for many
industries. For example, many web-based applications must
be able to handle petabytes worth of transactions on a daily
basis, and moreover, be able to quickly and efficiently act
upon data that exists in each transaction. As a result, pro-
viding testing capabilities for such applications becomes a
challenge of scale. We argue that existing approaches, such
as automated test suite generation, may not necessarily scale
without assistance. To this end, we discuss open issues and
possible solutions specific to testing big data applications.

CCS Concepts
•Software and its engineering → Software testing
and debugging; Search-based software engineering;
Software system structures;

Keywords
big data, search-based software testing, test suite generation

1. OVERVIEW
Many techniques are currently being developed for gener-

ating datasets of massive scale (i.e., big data) for use in
validating applications [1]. However, there is little pub-
lished research in performing testing on applications that
already interact with big data [9]. Moreover, even fewer pub-
lications explore how search-based software testing (SBST)
techniques can be used to optimize testing strategies [6, 8].
As such, research needs to be performed in testing big data
applications to determine both the feasibility and applica-
bility of existing testing techniques to such applications. For
example, consider a nationwide healthcare network that cen-
tralizes medical records for all patients. Such a system can
deals with an enormous amount of data as well as an amal-
gam of heterogeneous systems and devices. This system can
enable a patient to visit their primary care physician, re-
ceive a prescription for treatment with a specialist in another

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

SBST16, May 16-17, 2016, Austin, TX, USA
c© 2016 ACM. ISBN 978-1-4503-4166-0/16/05. . . $15.00

DOI: http://dx.doi.org/10.1145/2897010.2897014

state, and then enable that specialist to instantly retrieve
the entirety of the patient’s medical history. As such, spe-
cialized applications will require development to handle the
dataset, including optimizations for querying and retrieving
specific data. However, such applications may not be ef-
fectively tested by existing strategies, given the wide range
of values that may manifest. As such, this position paper
specifically argues for an examination on how big data can
impact existing testing strategies, focusing on automated test
suite generation.

Traditionally, software testing has been considered an ideal
field for application of search-based heuristics, such as ge-
netic algorithms [7]. Notable systems include EvoSuite [5]
and Nighthawk [2] for automated generation of test suites
and instantiation of unit tests, respectively. Given the op-
timization problems that typically comprise a software test-
ing strategy (e.g., test suite generation, test case prioritiza-
tion and selection, etc.), search-based heuristics have been
shown to quickly and efficiently come to an optimal solu-
tion. However, many industries are moving towards the big
data paradigm, where petabytes of data must be considered
at run time. As such, a strategy such as test suite genera-
tion may be cost-prohibitive, given the enormous number of
combinations of test parameters and values that can exist in
such a system.

We argue that existing techniques must be augmented to
support the big data paradigm. Increasing the complexity
and scale of applications is constantly a threat to validity
for many techniques [1], and as such, big data presents an
optimal platform for extending current techniques. To com-
bat the big data problem, many systems have started using
the MapReduce paradigm [3] to efficiently sift through and
retrieve results in a large dataset. It makes sense then, that
testing techniques must evolve alongside traditional appli-
cation logic. While each aspect of software testing will be
impacted by big data, this paper highlights test suite gener-
ation for discussion.

2. ISSUES AND POSSIBLE SOLUTIONS
This section discusses issues that can affect test suite gen-

eration with respect to big data, including possible SBST-
specific solutions.
Test suite generation. Test suites typically comprise a set
of test cases that are to be executed as specified by a test
plan in order to provide a measure of test coverage. More-
over, test suites are generally intended to validate a system
under a specific operating context, or set of circumstances
that differentiate one context from another. For instance,

2016 9th International Workshop on Search-Based Software Testing

 41

several test suites can be derived for a GUI-based applica-
tion, where each test suite corresponds to a particular win-
dow active within the application. Test suite generation has
been often studied within the context of SBST as an ideal
candidate for optimization. For instance, EvoSuite [5] is
a framework that uses evolutionary search to generate test
suites, as well as to suggest possible oracles, for a specified
Java program.
Impact of Big Data. Test suites are intended to pro-
vide a measure of coverage with respect to validation activ-
ities. As such, a typical application may have a manageable
set of operating contexts in which it operates, or in which
it can be configured to operate. An application that uses
big data, however, may be faced with a completely unman-
ageable set of operating contexts. Consider, for example,
a medical records network (MRN). Given the enormity of
its scale, there are innumerable configurations in which the
MRN can exist. As such, deriving test suites for each in-
stantiation of the MRN is a non-trivial task. However, if
we consider testing an application that interfaces with the
MRN (e.g., a phone application that retrieves a specific pa-
tient’s medical records), test suite derivation becomes more
manageable. The number of datasets that must be searched
upon, however, remains very large. As such, test suite gen-
eration must consider the numerous instantiations of patient
records, including textual data, binary large object (BLOB)
data (e.g., images, scans, etc.), and even data that has been
incorrectly or improperly entered.
Applications of SBST. In the face of big data, SBST
remains an optimal choice for generating test suites. Fur-
thermore, if we consider a MapReduce-style approach [3] to
software testing, SBST techniques can also be applied to
both the Map and Reduce phases (or ReReduce, as neces-
sary). Here, each coverage criterion could specify and be
mapped to a particular operating context. Moreover, the
reducing phase could also benefit from a searching heuris-
tic in that a minimal set of test suites would be desirable
to manage the expected number of instantiated operating
contexts. Recently, SBST and Hadoop have been combined
to automatically generate test suites using a parallelized ge-
netic algorithm [4]. Furthermore, automated test generation
has also been recently explored with respect to relational
database schemas [8].

For instance, it may be possible to determine a measure of
code coverage, even when faced with such an enormous set
of possible configurations, by searching for a representative
set of test suites that reliably cover all possible conditions.
For example, an MRN-affiliated application may have test
suites that focus on specific aspects of the dataset. Specifi-
cally, test suites could be optimized for textual data, BLOB
data, and other types of possible edge cases. Moreover, these
disparate sets of test suites could then be intersected to
generate additional test suites that validate combinations
of parameters that can impact a system (lending further
applicability to combinatorial testing). As such, an evolu-
tionary operation heuristic that considers multiple criteria,
such as a weighted fitness function or multi-objective opti-
mization algorithm, could be applied to examine the solu-
tion space of possible test suites, where optimization factors
could be represented by coverage and a minimal, represen-
tative set of test suites. Figure 1 demonstrates an example
of test suite coverage using operating contexts. In this fig-
ure, there exist n possible operating contexts represented
by the MRN, where an operating context could be consid-

ered a particular use case for an application that uses the
overall dataset. As such, an evolutionary algorithm could
search for a minimally-representative test suite that covers
each operating context within the possible space of solutions.
Moreover, reduction of test suites may be possible via join-
ing test suites together. For example, Test Suite 2 provides
a subset of its test cases to help cover Operating Context n.

Operating
Context 1

Operating
Context 2

Operating
Context n

Test Suite 1 Test Suite 2 Test Suite n

...

[test cases] [test cases] [test cases]

[subset of
test cases]

Figure 1: Sample test suite coverage.

Position. The authors posit that SBST techniques can en-
hance testing techniques for big data applications, specifi-
cally with respect to automated test suite generation. Ide-
ally, SBST can effectively reduce the enormous search space
presented by big data.

3. ACKNOWLEDGMENTS
This work has been supported by Oakland University.

Any opinions, findings, and conclusions or recommendations
expressed in this material are those of the author(s) and do
not necessarily reflect the views of Oakland University or
other research sponsors.

4. REFERENCES
[1] A. Alexandrov, C. Brücke, and V. Markl. Issues in big data

testing and benchmarking. In Proceedings of the Sixth
International Workshop on Testing Database Systems,
DBTest ’13, pages 1–5, 2013.

[2] J. H. Andrews, T. Menzies, and F. C. Li. Genetic algorithms
for randomized unit testing. IEEE Trans. on Software
Engineering, 37(1):80–94, January 2011.

[3] J. Dean and S. Ghemawat. Mapreduce: simplified data
processing on large clusters. Communications of the ACM,
51(1):107–113, 2008.

[4] L. Di Geronimo, F. Ferrucci, A. Murolo, and F. Sarro. A
parallel genetic algorithm based on hadoop mapreduce for
the automatic generation of junit test suites. In Proceedings
of the 2012 IEEE Fifth International Conference on
Software Testing, Verification and Validation, ICST ’12,
pages 785–793, 2012.

[5] G. Fraser and A. Arcuri. Evosuite: automatic test suite
generation for object-oriented software. In Proceedings of the
19th ACM SIGSOFT Symposium and the 13th European
Conference on Foundations of Software Engineering,
ESEC/FSE ’11, pages 416–419, Szeged, Hungary, 2011.
ACM.

[6] H. Hemmati, A. Arcuri, and L. Briand. Achieving scalable
model-based testing through test case diversity. ACM
Transactions on Software Engineering Methodologies,
22(1):6:1–6:42, 2013.

[7] J. H. Holland. Adaptation in Natural and Artificial Systems.
MIT Press, Cambridge, MA, USA, 1992.

[8] P. McMinn, C. J. Wright, and G. M. Kapfhammer. The
effectiveness of test coverage criteria for relational database
schema integrity constraints. ACM Transactions on
Software Engineering and Methodology, 25(1):8:1–8:49, 2015.

[9] S. Nachiyappan and S. Justus. Getting ready for bigdata
testing: A practitioner’s perception. In Fourth International
Conference on Computing, Communications and
Networking Technologies, ICCCNT 2013, pages 1–5, 2013.

42

