An Empirical Analysis of the Mutation Operator for Run-Time
Adaptive Testing in Self-Adaptive Systems

Erik M. Fredericks
Oakland University
Rochester, Michigan
fredericks@oakland.edu

ABSTRACT

A self-adaptive system (SAS) can reconfigure at run time in re-
sponse to uncertainty and/or adversity to continually deliver an
acceptable level of service. An SAS can experience uncertainty dur-
ing execution in terms of environmental conditions for which it
was not explicitly designed as well as unanticipated combinations
of system parameters that result from a self-reconfiguration or mis-
understood requirements. Run-time testing provides assurance that
an SAS continually behaves as it was designed even as the system
reconfigures and the environment changes. Moreover, introducing
adaptive capabilities via lightweight evolutionary algorithms into a
run-time testing framework can enable an SAS to effectively update
its test cases in response to uncertainty alongside the SAS’s adapta-
tion engine while still maintaining assurance that requirements are
being satisfied. However, the impact of the evolutionary parameters
that configure the search process for run-time testing may have a
significant impact on test results. Therefore, this paper provides an
empirical study that focuses on the mutation parameter that guides
online evolution as applied to a run-time testing framework, in the
context of an SAS.

CCS CONCEPTS

« Social and professional topics — Software selection and
adaptation; « Theory of computation — Online algorithms;
» Mathematics of computing — Evolutionary algorithms; «
Software and its engineering — Software testing and debug-
ging; Empirical software validation,;

KEYWORDS

search-based software testing, run-time testing, evolutionary algo-
rithms, self-adaptive systems

ACM Reference Format:

Erik M. Fredericks. 2018. An Empirical Analysis of the Mutation Opera-
tor for Run-Time Adaptive Testing in Self-Adaptive Systems. In SBST’18:
SBST’18:IEEE/ACM 11th International Workshop on Search-Based Software
Testing , May 28-29, 2018, Gothenburg, Sweden. ACM, New York, NY, USA,
8 pages. https://doi.org/10.1145/3194718.3194726

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

SBST’18, May 28-29, 2018, Gothenburg, Sweden

© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-5741-8/18/05...$15.00
https://doi.org/10.1145/3194718.3194726

1 INTRODUCTION

Self-adaptive systems (SAS) can self-reconfigure at run time to en-
sure continuing requirements satisficement (i.e. satisfied to some
degree) [7, 31, 33] in response to uncertainty. Uncertainty can man-
ifest in many different forms, including aleatory and epistemic [1],
as well as known-unknowns and emergent behaviors [14, 15]. Such
uncertainties can cause an SAS to react in possibly incorrect or
unforeseen manners, therefore, providing assurance at run time
is paramount to a system’s success. An SAS must ensure that not
only its high-level requirements are continually satisfied, but that
any test cases performing fine-grained validation also are continu-
ally passing. In the context of an SAS, test cases must be adaptive
in that they can reconfigure alongside the SAS [18, 19], possibly
using lightweight evolutionary techniques [4, 9]. However, the pa-
rameters that guide such a search procedure, specifically the o
parameter that guides the mutation operator of an online evolu-
tionary algorithm (EA), can significantly impact the outcome of
the search procedure. This paper presents an empirical study that
focuses on the impact that this key configurable value can have on
run-time evolutionary adaptation of test cases in an SAS.

The number of possible states and configurations that an SAS
may experience is generally impossible to fully enumerate by an
engineer [7, 8, 33, 41], leading to techniques for automatically val-
idating and verifying an SAS at design time [6, 16, 17, 36, 37, 39]
and run time [22, 23, 36, 38, 43, 47]. Additionally, techniques have
been developed for anticipating unexpected SAS and environmen-
tal configurations [39], however such techniques still may not fully
examine the entire solution space of all possible configurations.
Validating a system’s behavior at run time, then, relies on a well-
developed set of requirements and test cases that specify a sys-
tem’s behavior to the extent possible at design time. Previously,
the MAPE-T framework [20] was proposed to align testing with an
SAS’s ability to self-reconfigure by applying adaptive principles to
a run-time testing framework. Given that not all test cases may be
optimized for all environments at design time, the (1+1)-ONLINE
EA (a lightweight EA intended for run time) [4] can be used to
provide search capabilities for new combinations of test case pa-
rameters. The (1+1)-ONLINE EA sacrifices search power for speed
as it only considers two individuals per generation, in comparison
to a more powerful genetic algorithm that may consider several
hundreds of individuals per generation [27].

Given that a single parameter, o, is responsible for the search
procedure within the (1+1)-ONLINE EA, we examine how varying
this parameter impacts the run-time testing process. Specifically,
we present a sensitivity analysis on the search procedure in (1+1)-
ONLINE EA, where o dictates the relative difference between a
parent and a child genome via mutation. To this end, we vary the

https://doi.org/10.1145/3194718.3194726
https://doi.org/10.1145/3194718.3194726

SBST’18, May 28-29, 2018, Gothenburg, Sweden

value of ¢ for two case studies in distinct application domains, se-
lecting multiple values of o both manually and automatically, using
domain knowledge for manual selection and the stepwise adap-
tation of weights (SAW) heuristic [45] to more intelligently vary
the mutation operator automatically. Each aspect of the sensitivity
analysis will be used to demonstrate the effects of the o parameter
on run-time testing in terms of test case fitness.

To this end, we apply our sensitivity analysis to two case studies.
The first case study is a remote data mirroring (RDM) application
that has been provided by industrial collaborators [29, 30]. RDM is
a technique for ensuring that data is always protected and available
within a distributed network of servers and has been modeled as an
SAS. The second case study models a smart vacuum system (SVS)
that is tasked with cleaning a simulated room while maintaining
safety and failsafe concerns. Each case study is subjected to multi-
ple forms of uncertainty that can induce requirements violations
and run-time test case failures. Moreover, each case study is in-
strumented with an adaptive testing framework that leverages the
SAS’s adaptation engine.

Experimental results suggest that, for both case studies, the
value of o does not significantly impact the results of run-time
testing, even as the SAS reconfigures as a result of uncertainty. The
remainder of this paper is structured as follows. Section 2 presents
background information on each case study, run-time software
testing, and run-time evolutionary algorithms. Section 3 details our
approach for performing the analysis on o. Section 4 presents our
experimental setup and results. Finally, Section 5 summarizes this
paper and outlines future work.

2 BACKGROUND

This section presents relevant background information on the RDM
and SVS applications, run-time software testing, and run-time evo-
lutionary algorithms. Note that, for presentation purposes, we do
not provide a dedicated related work section and opt to include
relevant related works in this section and throughout the paper.

2.1 Remote Data Mirroring

RDM is a network-based application that ensures data is made avail-
able and prevents data loss by disseminating copies (i.e., replicates)
of messages to all servers (i.e., data mirrors) connected to the net-
work [29, 30]. In this fashion, a user could access the nearest server
when requesting data to provide faster response times, or when
requesting data from an unavailable server, the RDM network can
failover to a different server that is relatively close to the user. More-
over, data is protected from loss or damage in the RDM application
as data recovery techniques can be triggered upon determination
of data loss by reconstructing data from a different server.

The RDM application has been modeled as an SAS and can re-
configure in response to uncertainty [40]. Uncertainty can manifest
in terms of dropped, delayed, or corrupted messages, network link
failures, server failures, and sensor fuzz applied to server and link
sensors. The RDM self-reconfigures in terms of changes to its net-
work overlay to facilitate link recovery (e.g., changing from a grid
topology to a completely-connected topology), changes to its data

Erik M. Fredericks

propagation protocols (e.g., changing from asynchronous to syn-
chronous message transmission), and updates to server state (i.e.,
updating from actively to passively servicing message transactions).

2.2 Smart Vacuum System

An SVS is an autonomous robotic vacuum (similar to an iRobot
Roombal) that is tasked with cleaning a desired space, facilitated
by monitoring sensors to select an appropriate path planning algo-
rithm, manage power consumption, and mitigate safety concerns.
Available sensors can include distance sensors to measure the dis-
tance between the SVS and other objects in the room, bumper
sensors to detect collisions, cliff sensors to detect steps, and sen-
sors embedded within the wheel and suction motors to accurately
monitor SVS velocity and suction power, respectively. A central
controller unit aggregates all incoming sensor data and performs
an analysis to ensure that the SVS is operating safely and efficiently
by selecting appropriate path and power moding strategies towards
its goal of maximally cleaning the room.

The SVS is modeled as an adaptive system and can self-reconfigure
via mode changes [2, 35], where a mode change is a common strat-
egy for performing adaptations within embedded systems. A sample
mode change can be a reduced power mode where the SVS limits
power consumption from the wheel motors, effectively slowing the
SVS. Such a strategy may enable the robot to “limp home” to a charg-
ing station in the event that battery levels are critically low. The
SVS can experience uncertainty in terms of randomly instantiated
obstacles (e.g., pets, liquid spills, downward steps, etc.), occluded or
failing sensors, unexpected power drains, and the amount, location,
and distribution of dirt within the room. To mitigate such uncer-
tainties, the SVS can self-reconfigure, via mode changes, in terms of
reduced power consumption modes, different types of pathfinding
algorithms, and various measures for quickly and safely avoiding
unexpected obstacles.

2.3 Run-Time Software Testing

While software testing is a relatively well-understood field [3, 25,
34] and is generally performed at design time, performing testing at
run time introduces significant problems in terms of overhead to the
running system and concerns that testing a live system may impact
or influence its behavior. However, testing at run time can also
ensure that the system is satisfying its goals during execution [3, 11].
To combat performance concerns, techniques such as record-and-
replay [44] and multi-agent testing [36] have been introduced to
offload testing activities to either a sandboxed environment or an
additional agent with spare computing power.

As with software requirements [46], test cases can be defined as
invariant or non-invariant. An invariant test case describes a critical
concern, such as safety, that cannot fail at run time. If a failure
occurs in an invariant test case, the system has experienced a severe
fault that prohibits recovery. Conversely, a non-invariant test case
can temporarily be considered as failing, however such a failure can
be transient in nature and be mitigated by an SAS reconfiguration.
For this paper, only non-invariant test cases can be adapted, as
invariant test cases generally focus on some safety-critical task.
This paper also uses the IEEE definition of test cases, where a test

!iRobot Roomba: http://www.irobot.com

case comprises an expected value and the conditions for which
a pass/fail determination can be applied [28]. We focus mainly
on functional testing (i.e., validation against a test specification)
and regression testing (i.e. validation against a test specification
following a system update/change) [3, 26].

Veritas. Veritas is a technique for adapting test cases at run time
using the (1+1)-ONLINE EA in SASs [19]. Specifically, Veritas lever-
ages the SAS’s MAPE-K loop [31] to determine if a reconfiguration
is necessary in response to changing operating contexts and then
adapts test cases to better fit the new context while ensuring that
safety/failsafe concerns are not violated. We describe the Veritas
technique in greater detail in Section 3.1.

2.4 Run-Time Evolutionary Algorithms

Evolutionary algorithms (EA) are commonly used to efficiently
navigate a prohibitively-large search space for solving optimization
problems, with a common example being the genetic algorithm [27].
However, such algorithms often suffer from enormous overhead
in terms of processing time and memory required to evaluate each
candidate solution, as each solution must not only be encoded
but also simulated/executed to determine the overall fitness for
each candidate. To combat these difficulties, run-time EAs have
been developed to provide lightweight search capabilities as the
system executes. One such example is the (1+1)-ONLINE EA [4],
an algorithm based on the (1+1)-EA [12, 42]. The (1+1)-ONLINE
EA sacrifies searching power for speed by only maintaining two
genomes at any given time, one parent and one child. Search is
facilitated by a mutation value o that can be adapted to search
locally or globally, resulting from analysis of each candidate’s fitness
value. If fitness has been determined to be in a state of stagnation
(i.e., little to no change in fitness over a specified interval), then
o is updated to search more broadly. In this case, stagnation can
indicate the presence of a local optima.

Each candidate solution is instantiated to measure its fitness
value, with the better-performing candidate surviving and the
worse-performing candidate being discarded. In this technique,
a new candidate is created by mutating the genome of the winner
according to o. In terms of run-time testing, Table 2 presents an
example of (1+1)-ONLINE EA’s mutation as applied to an RDM test
case that measures the expected diffusion time of a message across
the network. In this table, the upper bound and lower bound are
mutated by o, where o = 2.0 in this case. Note that o mutates the
boundaries within a pre-defined tolerance to ensure that the failure
of this test case does not impact safety concerns. We discuss this
table in greater detail in Section 3.1.

The (1+1)-ONLINE EA cannot exhaustively search the entire
solution space as could a normal EA, however the ability to search at
run time, in parallel to a system’s normal execution tasks, facilitates
online solving of optimization problems.

Stepwise Adaptation of Weights. SAW is a hyper-heuristic [5]
for updating a weighting scheme in a linear-weighted sum, gen-
erally of a fitness function, to determine if different weighting
schemes can better reflect operating conditions to yield an optimal
fitness value [13, 45]. For instance, definition of a fitness function
often relies on the domain knowledge of an engineer or is based

SBST’18, May 28-29, 2018, Gothenburg, Sweden

on observed/calculated metrics, and as such, may not accurately
reflect the ideal composition of the function.

SAW can be implemented either offline or online, where an offline
SAW implementation adjusts fitness function weights following
execution of an EA. An online SAW implementation, as used in this
paper, dynamically adjusts fitness function weights at run time. For
the purposes of this paper, we update the value of ¢ at run time
using SAW in an online fashion [45]. In this case, the value of o is
selected to be as diverse as possible as we are optimizing a single
value.

For example, a fitness function may comprise three objectives
that are each measured using separate functions, each of which is
weighted to reflect its individual importance to the aggregate fitness
function. As such, the weights initially selected by the engineer
may not be optimal in all situations, and as a result, an automated
technique such as SAW can examine fitness results over time and
then automatically update weights at run time. SAW can select one
objective to be considered as “more important” based on monitored
conditions, thereby increasing its weight. SAW would then normal-
ize the remaining weights such that the sum of all weights equals
1.0, thereby lessening the contribution of other objectives to the
fitness function while still maintaining their input. SAW follows
this heuristic until the fitness stagnates or program execution ends.
Sensitivity Analysis. A sensitivity analysis is a technique for de-
termining the relative impact of a parameter or set of parameters
on a system under test [32]. While many techniques exist for per-
forming sensitivity analyses [24], we opt to vary the values of the
parameter in question based on a range of values that a test engi-
neer would select resulting from domain knowledge. Additionally,
we include random value selection as well as a hyperheuristic (i.e.,
SAW) for selecting values to test.

3 APPROACH

This section describes our approach for examining the impact of
the mutation operator ¢ on the (1+1)-ONLINE EA as implemented
within the Veritas run-time adaptive testing framework.

3.1 Run-Time Adaptive Testing

Veritas [19] is a run-time technique for providing assurance in an
SAS via online, evolutionary testing. Specifically, Veritas leverages
the (1+1)-ONLINE EA [4] to explore how different configurations of
test case parameters (i.e., lower bound, upper bound, and expected
value) can represent the continually-changing space in which an
SAS resides. Figure 1 presents an overview of the Veritas technique.
Veritas is executed each timestep, or as often as the SAS engineer
desires. Veritas takes as input a set of utility functions that capture
the run-time performance of software requirements [10, 21] and
are used to validate test results. During each testing cycle, (1) Veri-
tas uses the SAS’s monitoring framework to determine in which
operating context the system is executing. Next, (2) Veritas selects
a set of test cases that are impacted by the operating context to
be adapted at run time. Following, (3) Veritas executes a testing
cycle and (4) monitors test results (i.e., which tests pass or fail).
Veritas will then (5) adapt the appropriate attributes of each failing
test case. Steps (1) — (5) are supported by the (1+1)-ONLINE EA,
as denoted by the evolutionary loop. Upon completion, (6) Veritas

SBST’18, May 28-29, 2018, Gothenburg, Sweden

updates the test specification with the test case parameter values
that resulted from online optimization.

. X utility Run Time
utility Functions functions Execution

utility
values

Test Specification

(1) Monitor
Operational
Context

selected
test cases

context
configuration

(2) Select
Test Cases

(3) Execute
Test Plan

test results

(4) Analyze
and Validate
Test Results

(6) Update
Test
Specification

candidate
test cases

(5) Adapt

Test Cases
[not done]

test cases with
fitness values

parent
parent test cases

test cases

Test Case Archive

Figure 1: Data flow diagram of Veritas [19].

For example, consider a test case (TCgz) that was derived to
ensure that the SVS executes a specified path plan for 30 seconds.
In this case, the expected value is 30 sec, however an upper and lower
bound of + 1.0sec have been defined to provide flexibility in the
case of encountered uncertainties. As such, a measured execution
time for this particular path of 30.5 sec would be accepted as a
passing test case, whereas a value of 31.0 sec would be considered
a failure. Moreover, a safety threshold of + 5.0sec has also been
specified to restrict this test case from adapting beyond understood
critical boundaries. Veritas would then be given the flexibility to
explore a lower threshold, upper threshold, and expected value
within the specified safety tolerance (i.e., 30 sec + 5.0 sec).

During the course of SAS execution, Veritas examines the results
of each test case to determine if an adaptation is necessary as a
result of SAS reconfiguration. By correlating online testing with
requirements monitoring (i.e., ensuring that requirement utility
functions reflect the results of test cases), Veritas can determine if
a test case adaptation is warranted. For example, Veritas may deter-
mine that a test case has failed, while requirements that were linked
to this particular test case are satisfied. In this case, Veritas would
determine that a false positive resulted from testing and prevent on-
line adaptation. However, in the case of a true positive (i.e., both test
case and correlated requirement(s) report failure/violation), Veritas
would determine that the test case requires adaptation. Upon this
determination, Veritas applies a mutation operator o to search ei-
ther the global search space (i.e., broad) or local search space (i.e.,
fine-grained) by mutating the boundary elements of each affected
test case, within pre-defined safety tolerances. Given that Veritas
leverages the (1+1)-ONLINE EA, only two concurrent instances of
each test case exist (in comparison to a more standard type of EA
in which many different solutions exist in memory).

To this end, we define a test case to be either an exact value (i.e.,
a passing test case must match the expected value) or a range of
values (i.e., a passing test case must fall within a range, with the
expected value denoting a perfect match) as shown in Table 1. Each
type of test case comprises an expected value (exp), a lower and

Erik M. Fredericks

upper safety threshold (Isb, usb), and an additional lower and upper
bound (Ib, ub) to denote the acceptable range of values for a ranged
test case. For an exact test case, the expected value can be mutated
within the lower and upper bounds. However, the expected value,
lower, and upper bounds cannot be mutated outside of the safety
thresholds specified for each test case. For example, a ranged test
case may be defined as TC; = (Isb = 1.0, [b = 3.0, exp = 4.0,
ub=5.0,usb=7.0)

Parameter Adaptive || Symbol
Lower bound Yes b
Upper bound Yes ub

Expected value Yes exp
Lower safety threshold No Isb
Upper safety threshold No usb

Table 1: Test case definition.

The o mutation operator can be applied to both types of test
cases. For an exact test case, o is applied to the expected value
parameter by selecting a new random value between the lower and
upper bounds, with each bound divided by o. For instance, a test
case that measures the diffusion time for messages in the RDM
application may be expecting that a message is diffused within
8.0sec. As such, the test engineer has defined TC; according to
Equation 1:

TC7 = (Isb = 3.0sec, Ib = 6.0sec,

1
exp = 8.0sec,ub = 10.0sec, usb = 13.0sec) (1)

To demonstrate mutation, Equation 1 is expanded in Table 2
with a configured o = 2.0. Mutation of the expected value selects
a random value between [Isb = 6.0/c,usb = 10.0/c] and then
reassigns the expected value of TC7 to be 4.4sec. The new test case
TC7 would then temporarily replace TC; during the next iteration
of the testing procedure to determine if TC; better reflects the
environment. Note that Veritas does not adapt test cases to simply
pass, but rather adapts test cases to adequately reflect the operating
context.

Field Value Mutated Value (¢ = 2.0)

Lower bound 6.0 sec 6.0 sec /o = 3.0 sec

Upper bound 10.0 sec || 10.0 sec /o = 5.0sec

Lower safety threshold | 3.0 sec || NA

Upper safety threshold | 13.0 sec || NA

Expected value 8.0 sec || randFloat([bound;,,,,
boundy;4p]) = 4.4sec

Table 2: Mutation of test case with (1+1)-ONLINE EA.

To quantify the performance of an adaptive test case, test case
fitness has been defined to capture its relevance to its operating
context. Specifically, multiple fitness subfunctions were defined to
capture the performance of each type of test case. Table 3 presents
the fitness subfunctions previously defined by Fredericks et al. [19].2

2For presentation purposes, we abbreviate measured as M, expected as E, optimal as
O, value as val, and fitness function as ff.

Type Fitness subfunction

Invariant - Exact if(valpyy ==TCEg) : ffpr = 1.0

else: ffa =0.0

Invariant - Range if (valy € [valpp,valyp]) : ffmr =1.0

else: ffa =0.0

Non-invariant - Exact | ffa = 1.0 - lvaly—valp]

lvalg|

Non-invariant - Range | if(valys € [valpy,val,p]) : ffa = 1.0

. _ lvalpyr—valo|
else: ffar =1.0- W

Table 3: Test case fitness subfunctions.

In the case of non-invariant ranged test cases, an optimal test
case value is specified to be the nearest acceptable range boundary
to the measured value. Consider TC7 as defined in Equation 1. If
the measured value (i.e., valys) is 6.2sec, then the optimal test case
value (i.e., valp) will be its nearest boundary Ib, or 6.0sec.

Lastly, the overall fitness value is calculated for each test case,
comprising a weighted linear sum as defined in Equation 2:

ffrest_case = an * f fm + ay * ValidResult (2)
where:

1.0 if valy € [valjsp,valygp],

ValidResult = { 3)

0.0 else.

3.2 Stepwise Adaptation of Weights

In addition to static values of @ that will be evaluated, we introduce
the hyper-heuristic SAW into Veritas to intelligently adapt o at run
time. Specifically, our implementation of the online variation of
SAW [45] is as follows in Algorithm 1:

Algorithm 1 Online SAW implementation for RDM application.

1: timesteps < 300

2: test_cases < instantiateTestCases()
3: for (i =0; i < timesteps; ++1i) do
4 Execute RDM at it timestep

5: Execute SAS adaptation engine

6: Execute Veritas

7: ts « i mod 10

8: if ts = 0 then % Execute SAW

o: Retrieve all prior values of o

10: Calculate mean of o prior values

11: Generate random set of candidate o values
12: Select o with maximum distance from mean
13: Apply new o to Veritas-selected test cases
14: end if

15: end for

Algorithm 1 demonstrates that SAW is triggered every 10th
timestep to update the value of o used by Veritas in the following
execution cycles. Here, SAW retrieves all prior values of o up to
the current timestep and calculates the mean of these values. Next,

3Note that this is considering the non-mutated form of TCj.

SBST’18, May 28-29, 2018, Gothenburg, Sweden

SAW generates a random pool of ¢ candidates, bounded within
a safety range specified by the test engineer, and then selects the
candidate value that maximizes the distance from the mean of all
prior ¢ values. In this regard, SAW is maximizing the explored
search space governed by 0. The SAW implementation for the SVS
application follows the same algorithm, however the number of
timesteps is configured to be 120.

4 EXPERIMENTAL RESULTS

This section describes our experimental setup and results from in-
vesting how ¢ impacts the run-time evolutionary search process on
two separate application domains: the RDM and SVS applications.

4.1 Experimental Setup

For this paper, we focus on the impact of the mutation parameter
o within the (1+1)-ONLINE EA as applied to run-time adaptive
testing for SASs. We have implemented Veritas [19] on top of the
MAPE-K loop [31] that guides adaptation of the RDM and SVS ap-
plications, respectively, where Veritas leverages the (1+1)-ONLINE
EA as previously introduced by Bredeche et al. [4].

The RDM application was simulated as a completely-connected
graph, where each node in the graph represents a server (i.e., data
mirror) and each edge represents a network link between servers.
Uncertainty was simulated to manifest via randomly inserted mes-
sages for dissemination at any point during execution, unexpected
network link failures, random noise applied to both server sen-
sors and network traffic, and randomly dropped and/or delayed
messages. To mitigate uncertainty, the RDM application can self-
reconfigure in terms of its network topology, methods of prop-
agating messages, and server state (e.g., from actively servicing
transactions to refusing to service transactions). The RDM applica-
tion was executed for 300 timesteps during which all servers must
receive a copy of all messages inserted into the network.

The SVS application was simulated as an autonomous robotic
vacuum that comprises a set of sensors, each of which interact with
the environment or SVS itself. Available sensors include bumper
sensors that detect collisions, an object sensor to measure the dis-
tance between the SVS and nearby objects (either stationary or
in motion), cliff sensors to detect stairs, and sensors instrumented
within the wheel and suction motors. Each sensor has a probabil-
ity of fuzz and failure, where fuzz occludes the sensor’s readings,
and failure causes the sensor to cease function for the remainder
of execution. The SVS also has a central controller for handling
sensor input and making decisions based on its understanding of
the environment. Moreover, the controller is also responsible for
providing MAPE-K capabilities in terms of self-reconfiguration,
where a reconfiguration may be triggered by unsafe conditions
(e.g., a detected step or pool of water) or objects (e.g., a pet or child)
that must be quickly avoided by the SVS. The SVS was executed for
120 simulated timesteps and was required to vacuum at minimum
50% of the dirt particles within the room. The SVS experiences envi-
ronmental uncertainty in terms of the amount, location, and size of
dirt particles; the width and height of the room; the appearance and
location of a downward step; and instantiated objects (e.g., circular
liquid spill, columns, pets) that must be navigated safely around by
the SVS. System uncertainty was represented by occluded and/or

SBST’18, May 28-29, 2018, Gothenburg, Sweden

failing sensors that could be triggered at each timestep, based on
the defined probability of occlusion/failure for each sensor. For
each experimental treatment, the SVS was placed in 15 unique con-
figurations of system and environmental parameters as generated
by Loki [39], a technique for generating diverse combinations of
system and environmental parameters.

The RDM test specification comprises 36 test cases, where 7 are
invariant and 29 are non-invariant [18]. The SVS test specification
comprises 72 test cases, 17 of which are invariant and 55 of which
are non-invariant. As defined by Veritas, only non-invariant test
cases can be adapted at run time to ensure that safety/failsafe con-
cerns are continually satisfied. The fitness function weights (s
and @, 4;;4) for both the RDM and SVS were set to 0.4 and 0.6,
respectively [19].

For both the RDM and SVS applications, the online version of
SAW has been implemented for varying o, as shown in Algorithm 1.
SAW was triggered every 10 timesteps, where SAW examines the
previous states of o up to the current time and selects a new value
of o to maximize its distance from all prior instantiations of ¢.4

Table 4 presents the different values of o that were selected
for study. Specifically, the value of ¢ dictates the upper and lower
bounds that can be randomly selected for mutating a test case’s
acceptable range of values, where the expected value of the test
case is then modified to be randomly generated between the new
bounds. Each mutation introduced is constrained to not violate any
defined safety thresholds as previously specified by a test engineer.
For each case study, we examine seven o values, where 015 use a
varying static value, ¢ introduces randomness to achieve diversity
at each timestep of execution, and o7 uses the SAW heuristic to in-
telligently update this value. A control in which no adaptation (i.e.,
Veritas was disabled) was also performed to provide a basis for com-
parison. For both the RDM and SVS applications, 50 experimental
replicates were performed for each value of ¢ to achieve statistical
significance. In addition to randomly varying the configuration of
system and environmental parameters, a random distribution was
also selected for each replicate to seed the random number gen-
erator. Possible distributions include [Beta, Binomial, ChiSquare,
Exponential, Gamma, Geometric, Gaussian, Poisson, Triangular,
Uniform].

orp | Value

o1 1.0

o2 2.0

03 4.0

o4 8.0

o5 12.0

o6 randFloat([1.0,12.0]) per timestep
07 SAW

Table 4: Tested values of o.

4As there is only a single instance of o at any given point, we opted to examine
diversity over performance in terms of the SAW algorithm.

Erik M. Fredericks

4.2 Experimental Results

We now present the results of each case study. For presentation pur-
poses, results for both case studies will be demonstrated together. To
determine statistical significance, we performed a one-way ANOVA
test (p < 0.05) to determine if a significant difference exists between
data sets, as well as Wilcoxon-Mann-Whitney u-tests in a pairwise
fashion (p < 0.05) to analyze the data more closely. While Veritas
has been previously presented to significantly increase adaptive test
case fitness over non-adaptive test case fitness [19], we also include
non-adaptive test case fitness values as a control. To this end, we
define the following null hypothesis HO to state that “there exists
no significant difference between different values of ¢ for adaptive
testing with the (1+1)-ONLINE EA” and the alternate hypothesis
H1 to state that “there is a significant difference between different
values of ¢ for adaptive testing with the (1+1)-ONLINE EA”

Figure 2 presents the average test case fitness values from a
sensitivity analysis of o on Veritas in the RDM and SVS applications,
with RDM values on the left of the separator and SVS values on the
right. As this figure indicates, there exists a significant difference
between the Control and Veritas experiments for both the RDM
and SVS applications (p < 0.05, ANOVA and pairwise Wilcoxon-
Mann-Whitney u-tests), confirming prior results that performing
adaptation on run-time testing provides a positive impact on test
case fitness [19]. However, no significant difference exists between
each experiment where o is varied (p < 0.05, ANOVA and pairwise
Wilcoxon-Mann-Whitney u-tests). This result is surprising, as o
provides the only means of search within the (1+1)-ONLINE EA
and was expected to influence fitness results. Furthermore, the SVS
fitness values are significantly lower than those of the RDM overall,
however that is related to the performance of the SVS, with test case
values indicating that the SVS is performing relatively poorly. At
minimum, Veritas still significantly enhances test case performance.

While these results suggest that we can accept the null hypothe-
sis HO in that varying o has no impact on run-time adaptive testing,
the implication that varying a mutation parameter has minimal im-
pact is concerning. As previously shown by Bredeche et al., varying
o can have a significant impact on a robot controller, where the
EA searches for configurations of a neural network [4]. Therefore,
the remaining conclusion to draw is that the impact of o in Veritas
specifically is limited. While performing adaptive testing signifi-
cantly improves test case fitness [19], there must be little variation
in the test case parameter values discovered for each operating
context. Therefore, the important aspect of Veritas must be adapt-
ing to the new context, rather than minutely examining the search
space of test case parameters. Moreover, test cases are extremely
fine-grained by nature, and as a result the search space for a valid
test case will also be fine-grained.

In terms of contributions and novelty, this paper demonstrates
the effect that a relatively small search space imparts onto an SAS.
Specifically for this context, each test case has a limited range of
possible values that can be selected at run time as valid, resulting
from safety constraints that are necessary to ensure that no invari-
ant goals are violated. While there is little variation in discovery
of “optimal” test case parameters, the fact that Veritas significantly
performs better than the Control indicates that an online search

RDM
197 | | | | | | |
[][][][][|][

0 | | | | | | \
w0

']

-

=

L o8-

L]

w0

1]

O

—

wn

ﬁna—

L]

()]

]

o

g

<€ 04-

Control a,="110 gp,=2.0 a,=4.0 g,=8.0 a;=120 gg=rand g;=SAW

SBST’18, May 28-29, 2018, Gothenburg, Sweden

SVS

—_

Control gy =10 a0,=20 o3

Figure 2: Comparison of average test case fitness values for RDM and SVS applications.

process is useful. This result suggests that, for an SAS, perform-
ing a lightweight search process at run time can enhance overall
assurance that the system is behaving as intended. In terms of
the non-significance between Veritas results, future work can ex-
plore more heavy-processing techniques such as multi-objective
optimization or model-based testing, where processing tasks are
offloaded to external agents.

Threats to validity. The research presented in this paper examined
the importance of the mutation operator o on the (1+1)-ONLINE EA,
as implemented within Veritas. As such, we’ve identified the follow-
ing threats to validity. One threat to validity lies in the derivation
and validity of test cases for each case study. Another threat lies in
the configuration and implementation of both the RDM and SVS ap-
plications. The test cases may also be too fine-grained/constrained
for evolution to successfully discover global optima (i.e, a more
diverse set of test cases may provide different results), resulting in
a limited search space where test case parameters converge to simi-
lar values. Finally, the online version of SAW technically updates
the fitness function at run time, leading to the possibility that the
fitness function becomes too flexible, leading to solutions that stray
from the original intent of each respective test case.

5 DISCUSSION

This paper has presented an empirical study on the impact that
the mutation operator ¢ imparts onto a run-time EA that has been
implemented within a run-time testing framework, where the run-
time EA guides test case adaptation as uncertainty manifests within
an SAS and its environment. Specifically, we examined ¢ in the
context of the Veritas technique as applied to two case studies in
different application domains: the RDM and SVS applications. The
RDM application ensures that data is replicated across a network of
physically-remote servers to ensure data availability and reliability,
and the SVS application simulates an autonomous robotic vacuum
that must clean a room while mitigating uncertainty and safety
concerns. Veritas implements the (1+1)-ONLINE EA to search for
combinations of test case parameters that more accurately reflect

changing operating contexts. Experimental results suggest that, for
each application domain, the role of ¢ has no significant impact
on both the search process and test results. Future work includes
further examination of ¢ in other application domains, including
those that are not specifically test-oriented. Moreover, we intend
to apply other types of run-time evolutionary techniques to the
Veritas testing framework to determine the feasibility and result of
other techniques.

ACKNOWLEDGEMENTS

This research has been supported in part by NSF grant CNS-1657061,
the Michigan Space Grant Consortium, the Comcast Innovation
Fund, and Oakland University. Any opinions, findings, and conclu-
sions or recommendations expressed in this material are those of
the authors and do not necessarily reflect the views of Oakland
University or other research sponsors.

REFERENCES

[1] Jason Matthew Aughenbaugh. 2006. Managing uncertainty in engineering de-
sign using imprecise probabilities and principles of information economics. Ph.D.
Dissertation.

Nelly Bencomo and Amel Belaggoun. 2013. Supporting decision-making for

self-adaptive systems: from goal models to dynamic decision networks. In

Requirements Engineering: Foundation for Software Quality. Springer, 221-236.

Antonia Bertolino. 2007. Software Testing Research: Achievements, Challenges,

Dreams. In Future of Software Engineering, 2007. FOSE 07. 85-103.

N. Bredeche, E. Haasdijk, and A.E. Eiben. 2010. On-Line, On-Board Evolution

of Robot Controllers. In Artificial Evolution, Pierre Collet, Nicolas Monmarché,

Pierrick Legrand, Marc Schoenauer, and Evelyne Lutton (Eds.). Lecture Notes in

Computer Science, Vol. 5975. Springer Berlin Heidelberg, 110-121.

[5] Edmund Burke, Graham Kendall, Jim Newall, Emma Hart, Peter Ross, and So-
nia Schulenburg. 2003. Hyper-Heuristics: An Emerging Direction in Modern
Search Technology. In Handbook of Metaheuristics, Fred Glover and Gary A.
Kochenberger (Eds.). Vol. 57. Springer US, 457-474.

[6] J.Camara and R. de Lemos. 2012. Evaluation of resilience in self-adaptive systems

using probabilistic model-checking. In Software Engineering for Adaptive and

Self-Managing Systems. 53 —62.

Betty H. C. Cheng, Rogério Lemos, Holger Giese, Paola Inverardi, Jeff Magee,

and et al. 2009. Software engineering for self-adaptive systems: A research

roadmap. In Software engineering for self-adaptive systems. Springer-Verlag,

Berlin, Heidelberg, Chapter Software Engineering for Self-Adaptive Systems: A

Research Roadmap, 1-26.

7

SBST’18, May 28-29, 2018, Gothenburg, Sweden

(8]

[9

=

[10]

[12]
[13]

[14]

[15

[16]

[17]

[18

[19]

[20]

[21]

[22]

[23

[24]

[25]

[26]

[27]
[28]

[29]

[30]

[31]

Betty H. C. Cheng, Pete Sawyer, Nelly Bencomo, and Jon Whittle. 2009. A Goal-
Based Modeling Approach to Develop Requirements of an Adaptive System with
Environmental Uncertainty. In Proc. of the 12th International Conference on Model
Driven Engineering Languages and Systems. Springer-Verlag, Berlin, Heidelberg,
468-483.

Zack Coker, David Garlan, and Claire Le Goues. 2015. SASS: Self-adaptation
using stochastic search. In Proceedings 10th International Symposium on Software
Engineering for Adaptive and Self-Managing Systems (SEAMS 2015). IEEE, 168—
174.

Paul deGrandis and Giuseppe Valetto. 2009. Elicitation and Utilization of
Application-level Utility Functions. In Proc. of the 6th International Conference on
Autonomic Computing (ICAC "09). ACM, 107-116.

N. Delgado, A.Q. Gates, and S. Roach. 2004. A taxonomy and catalog of runtime
software-fault monitoring tools. IEEE Transactions on Software Engineering 30,
12 (2004), 859-872

Stefan Droste, Thomas Jansen, and Ingo Wegener. 2002. On the analysis of the
(1+1) evolutionary algorithm. Theoretical Computer Science 276, 1 (2002), 51-81.
AE. Eiben and J. K. van der Hauw. 1998. Adaptive penalties for evolutionary
graph coloring. In Artifical Evolution. Springer.

N. Esfahani. 2011. A framework for managing uncertainty in self-adaptive soft-
ware systems. In 26th IEEE/ACM International Conference on Automated Software
Engineering (ASE). 646—650.

Naeem Esfahani, Ehsan Kouroshfar, and Sam Malek. 2011. Taming uncertainty
in self-adaptive software. In Proceedings. of the 19th ACM SIGSOFT symposium
and the 13th European conference on Foundations of software engineering. ACM,
234-244. https://doi.org/10.1145/2025113.2025147

Yliés Falcone, Mohamad Jaber, Thanh-Hung Nguyen, Marius Bozga, and Saddek
Bensalem. 2011. Runtime verification of component-based systems. In Proc.
of the 9th international conference on Software engineering and formal methods.
Springer-Verlag, Berlin, Heidelberg, 204-220.

Antonio Filieri, Carlo Ghezzi, and Giordano Tamburrelli. 2012. A formal approach
to adaptive software: continuous assurance of non-functional requirements. For-
mal Aspects of Computing 24 (2012), 163-186. Issue 2.

Erik M. Fredericks and Betty H. C. Cheng. 2015. Automated Generation of
Adaptive Test Plans for Self-Adaptive Systems. In Proceedings of 10th International
Symposium on Software Engineering for Adaptive and Self-Managing Systems
(SEAMS ’15).

Erik M. Fredericks, Byron DeVries, and Betty H. C. Cheng. 2014. Towards Run-
time Adaptation of Test Cases for Self-Adaptive Systems in the Face of Uncer-
tainty. In Proceedings of the 9th International Symposium on Software Engineering
for Adaptive and Self-Managing Systems (SEAMS ’14).

Erik M. Fredericks, Andres J. Ramirez, and Betty H. C. Cheng. 2013. Towards run-
time testing of dynamic adaptive systems. In Proceedings of the 8th International
Symposium on Software Engineering for Adaptive and Self-Managing Systems
(SEAMS ’13). IEEE Press, 169-174.

David Garlan, Shang-Wen Cheng, An-Cheng Huang, Bradley Schmerl, and Peter
Steenkiste. 2004. Rainbow: Architecture-based self-adaptation with reusable
infrastructure. Computer 37, 10 (2004), 46-54.

C. Ghezzi. 2010. Adaptive Software Needs Continuous Verification. In Software
Engineering and Formal Methods (SEFM), 2010 8th IEEE International Conference
on.3 —4.

Heather J. Goldsby, Betty H. C. Cheng, and Ji Zhang. 2008. Models in Software En-
gineering. In Models in Software Engineering, Holger Giese (Ed.). Springer-Verlag,
Berlin, Heidelberg, Chapter AMOEBA-RT: Run-Time Verification of Adaptive
Software, 212-224.

Amir Hakami, M. Talat Odman, and Armistead G. Russell. 2003. High-Order, Di-
rect Sensitivity Analysis of Multidimensional Air Quality Models. Environmental
Science & Technology 37, 11 (2003), 2442-2452.

Mark Harman, S Afshin Mansouri, and Yuanyuan Zhang. 2009. Search based
software engineering: A comprehensive analysis and review of trends techniques
and applications. Department of Computer Science, King’s College London, Tech.
Rep. TR-09-03 (2009).

Mark Harman, Phil McMinn, Jerffeson Teixeira Souza, and Shin Yoo. 2012. Search
Based Software Engineering: Techniques, Taxonomy, Tutorial. In Empirical Soft-
ware Engineering and Verification. Lecture Notes in Computer Science, Vol. 7007.
Springer Berlin Heidelberg, 1-59.

John H. Holland. 1992. Adaptation in Natural and Artificial Systems. MIT Press,
Cambridge, MA, USA.

IEEE. 2010. Systems and software engineering — Vocabulary. ISO/IEC/IEEE
24765:2010(E) (Dec 2010), 1-418.

Minwen Ji, Alistair Veitch, and John Wilkes. 2003. Seneca: Remote mirroring
done write. In USENIX 2003 Annual Technical Conference. USENIX Association,
Berkeley, CA, USA, 253-268.

Kimberly Keeton, Cipriano Santos, Dirk Beyer, Jeffrey Chase, and John Wilkes.
2004. Designing for Disasters. In Proceedings of the 3rd USENIX Conference on
File and Storage Technologies. USENIX Association, Berkeley, CA, USA, 59-62.
J.0. Kephart and D.M. Chess. 2003. The vision of autonomic computing. Computer
36, 1 (January 2003), 41 — 50.

(32

(33]

[34

[35

(37

(38]

[39

S
=

[41]

[42

[43

[45

[46

[47]

Erik M. Fredericks

Barbara A Kitchenham, Shari Lawrence Pfleeger, Lesley M Pickard, Peter W Jones,
David C. Hoaglin, Khaled El Emam, and Jarrett Rosenberg. 2002. Preliminary
guidelines for empirical research in software engineering. IEEE Transactions on
software engineering 28, 8 (2002), 721-734.

P.K. McKinley, S.M. Sadjadi, E.P. Kasten, and B. H. C. Cheng. 2004. Composing
adaptive software. Computer 37, 7 (July 2004), 56 — 64.

Glenford] Myers, Corey Sandler, and Tom Badgett. 2011. The art of software
testing. John Wiley & Sons.

Sandeep Neema, Ted Bapty, and Jason Scott. 1999. Development environment for
dynamically reconfigurable embedded systems. In Proceedings of the International
Conference on Signal Processing Applications and Technology. Orlando, FL.

Cu D. Nguyen, Anna Perini, Paolo Tonella, and Fondazione Bruno Kessler. 2007.
Automated Continuous Testing of MultiAgent Systems. In The Fifth European
Workshop on Multi-Agent Systems (EUMAS).

Duy Cu Nguyen, Anna Perini, and Paolo Tonella. 2008. A goal-oriented software
testing methodology. In Proc. of the 8th international conference on Agent-oriented
software engineering VIII. Springer-Verlag, Berlin, Heidelberg, 58-72.

N.A. Qureshi, S. Liaskos, and A. Perini. 2011. Reasoning about adaptive require-
ments for self-adaptive systems at runtime. In Proc. of the 2011 International
Workshop on Requirements at Run Time. 16 —22.

AlJ. Ramirez, A.C. Jensen, B. H. C. Cheng, and D.B. Knoester. 2011. Automatically
exploring how uncertainty impacts behavior of dynamically adaptive systems.
In 26th IEEE/ACM International Conference on Automated Software Engineering
(ASE). 568 -571. (Preliminary work described in short paper).

Andres J. Ramirez, David B. Knoester, Betty H. C. Cheng, and Philip K. McKinley.
2009. Applying genetic algorithms to decision making in autonomic comput-
ing systems. In Proceedings of the 6th International Conference on Autonomic
Computing. 97-106. (Best paper award).

P. Sawyer, N. Bencomo, J. Whittle, E. Letier, and A. Finkelstein. 2010.
Requirements-Aware Systems: A Research Agenda for RE for Self-adaptive Sys-
tems. In Requirements Engineering Conference (RE), 2010 18th IEEE International.
95 -103.

Hans-Paul Schwefel. 1981. Numerical optimization of computer models. John
Wiley & Sons, Inc.

Gabriel Tamura, NorhaM. Villegas, HausiA. Miiller, JoaoPedro Sousa, Basil Becker,
Gabor Karsai, Serge Mankovskii, Mauro Pezzé, Wilhelm Schéfer, Ladan Tahvildari,
and Kenny Wong. 2013. Towards Practical Runtime Verification and Validation of
Self-Adaptive Software Systems. In Software Engineering for Self-Adaptive Systems
II. Lecture Notes in Computer Science, Vol. 7475. Springer Berlin Heidelberg,
108-132.

JJ.-P. Tsai, K.-Y. Fang, Horng-Yuan Chen, and Yao-Dong Bi. 1990. A noninter-
ference monitoring and replay mechanism for real-time software testing and
debugging. Software Engineering, IEEE Transactions on 16, 8 (1990), 897-916.
van der Hauw K. 1996. Evaluating and improving steady state evolutionary
algorithms on constraint satisfaction problems. Master’s thesis. Leiden University.
Axel van Lamsweerde. 2009. Requirements Engineering: From System Goals to
UML Models to Software Specifications. Wiley.

O. Wei, A. Gurfinkel, and M. Chechik. 2011. On the consistency, expressiveness,
and precision of partial modeling formalisms. Information and Computation 209,
1(2011), 20-47.

https://doi.org/10.1145/2025113.2025147

	Abstract
	1 Introduction
	2 Background
	2.1 Remote Data Mirroring
	2.2 Smart Vacuum System
	2.3 Run-Time Software Testing
	2.4 Run-Time Evolutionary Algorithms

	3 Approach
	3.1 Run-Time Adaptive Testing
	3.2 Stepwise Adaptation of Weights

	4 Experimental Results
	4.1 Experimental Setup
	4.2 Experimental Results

	5 Discussion
	References

