
Search@Home: A Commercial Off-the-Shelf
Environment for Investigating Optimization

Problems

Erik M. Fredericks1 and Jared M. Moore2

1 Dept. of Computer Science & Engineering, Oakland University
Rochester MI, 48309, USA, fredericks@oakland.edu

2 School of Computing and Information Systems, Grand Valley State University
Allendale MI, 49401, USA, moorejar@gvsu.edu

Abstract. Search heuristics, particularly those that are evaluation-driven
(e.g., evolutionary computation), are often performed in simulation, en-
abling exploration of large solution spaces. Yet simulation may not truly
replicate real-world conditions. However, search heuristics have been
proven to be successful when executed in real-world constrained envi-
ronments that limit searching ability even with broad solution spaces.
Moreover, searching in situ provides the added benefit of exposing the
search heuristic to the exact conditions and uncertainties that the de-
ployed application will face. Software engineering problems can benefit
from in situ search via instantiation and analysis in real-world environ-
ments. This paper introduces Search@Home, an environment comprising
heterogeneous commercial off-the-shelf devices enabling rapid prototyp-
ing of optimization strategies for real-world problems.

Keywords: Real-world systems, evolutionary search, in-situ search, search-
based software engineering

1 Introduction

Commercial off-the-shelf (COTS) microcomputers (e.g., Raspberry Pi, Arduino,
BeagleBone, etc.3) are democratizing access to many-core distributed computing
environments. Such devices are generally constrained in terms of available pro-
cessing power and hard drive space, limiting their ability to individually carry
out complicated tasks quickly. Moreover, such devices will generally consume
far less power than a typical device used for simulation (e.g., server blade).
We posit that a microcomputing environment is therefore beneficial in terms of
rapidly prototyping search heuristics, in real-world conditions, yet may require
additional time to complete complex computing tasks. Specifically, we highlight
search-based software engineering (SBSE) as an attractive domain for real-world
search.
3 See https://www.raspberrypi.org/, https://www.arduino.cc/, and
https://beagleboard.org, respectively.

2 E. Fredericks and J. Moore

Optimization performed in real-world situations allows the system to analyze
relevant information from data specific to its operating context (i.e., combination
of system and environmental parameters) rather than simulating such param-
eters [2]. Self-adaptation has been applied to cyber-physical systems enabling
reconfiguration at run time in response to uncertainty, including those systems
considered to be safety critical [8]. Online evolutionary optimization has been
previously performed in fields such as robotics, where a (1+1) evolutionary strat-
egy searches for optimal neural network configurations [3]. Given the difficulties
in performing speculative, evaluation-driven optimizations at run time, contin-
uous optimization methods such as Markov chains and Bayesian methods have
also been applied [4, 10]. Regardless of the method, an online optimization strat-
egy must consider the implications of updating an executing system within its
production environment.

This paper introduces and demonstrates Search@Home, a framework for
quickly prototyping in-place search-based software engineering (SBSE) tech-
niques using COTS hardware. Search@Home is intended to provide a low-cost
testbed that can be deployed in a target environment to rapidly prove out online
search heuristics (e.g., run-time requirements monitoring/optimization). While
a longer evaluation time is to be expected with low-power hardware, the ben-
efits of performing search in a real-world environment far outweigh the speed
gains of using a simulation that may be misconfigured or inaccurately describe
the environment-to-be. We next describe background and related work, demon-
strate Search@Home on a proof-of-concept optimization problem, and outline
future experiments.

2 Real-World Systems

This section presents relevant information on microcomputers and how SBSE
techniques can be effective within constrained environments.

Microcomputers: Consumer-grade microcomputers have been widely propa-
gated at inexpensive price points with the recent explosion of interest in Maker-
related topics (e.g., hacking home electronics, 3D printing, etc.), many of which
are targeted at STEM education and non-production projects. Moving from sim-
ulation to reality in constrained environments requires addressing concerns in:

– Power : Beyond power optimization, microcomputers often supplied by sub-
standard power cables, resulting in undervoltage (i.e., slow/erratic behavior).

– Temperature : Heat can negatively impact devices without active (i.e., fans)
or passive (i.e., heat sinks) cooling, leading to CPU throttling.

– Memory : Microcomputers are constrained with the amount of available
memory for handling computing tasks. While the newest Raspberry Pi (4B)
has up to 8GB of available RAM, older models have significantly less mem-
ory. Edge devices exist specifically for heavy-duty computing (e.g., Google
Coral4), however they are generally used for only specialized purposes.

4 See https://www.coral.ai/.

Search@Home 3

– Disk space : Depending on the device, permanent storage (e.g., EEPROM,
ROM, flash memory, etc.) is often at a premium in terms of availability.
Devices such as the Arduino and BeagleBone rely on programmable memory
space for long-term storage, whereas the Raspberry Pi uses a microSD card
for its storage.

– Timing constraints: While the devices used in this paper do not use real-
time operating systems, timing constraints must be explicitly handled by the
engineer, else faults can occur when software deadlines are violated.

Online/hardware-based optimization: One common theme across optimiza-
tion algorithms is that there exists no “free lunch” as there are always limiting
factors in the application or environment [13]. Limitations for online optimiza-
tion will be readily-noticeable in run time, memory overhead, etc. In constrained
systems these impacts are exceedingly noticeable given their lower operating ca-
pabilities. Care must be taken when performing optimization in constrained
systems.

In situ optimization has been applied to wireless sensor network applica-
tions, where run-time reconfiguration and programming models enable optimiza-
tion [11]. Li et al. minimized power consumption of test suites in low power
systems using an integrated linear programming approach [6]. Continuous opti-
mization is a common feature in other domains as well. Wang and Boyd applied
an online optimization technique (a primal barrier method) to model-predictive
control applications [12]. Mars and Hundt combined static and dynamic opti-
mization strategies to direct online reconfiguration based on scenarios [7]. Op-
timization has also been applied online in a data-driven capacity, where uncer-
tainty models can inform decision making [2].

Search heuristics have also been deployed in silica. Genetic algorithms (GA)
have been deployed to field-programmable gate arrays (FPGA) for hardware-
based optimization [9], enabling rapid prototyping of fast, low-power search.
Energy management is another concern for metaheuristics, specifically those in-
volving smart power grids [5]. With additional hardware modules, Search@Home
can be extended to use in silica search and act instead as a controller, and more-
over, monitor energy consumption with appropriate sensors.

3 Search@Home Overview

For the purposes of this paper (and its initial implementation), Search@Home
was implemented as an IoT environment comprising two Raspberry Pi 3B de-
vices, a Raspberry Pi 4B (4GB model), a spare 2010-era netbook (acting as
a point of entry to the network), and a wireless router (flashed with Tomato
firmware) to provide a sandboxed network. Devices can be interchangeable – as
long as the device can connect to the network it can participate in the environ-
ment. For example, an Arduino Duo could be included as long as an appropriate
communication channel to the rest of the network is established (i.e., a WiFi
shield is installed).

4 E. Fredericks and J. Moore

We applied a string optimization problem demonstrating the feasibility of
deploying a search algorithm to a heterogeneous collection of devices. The al-
gorithm was developed with Python 3.7 and each Raspberry Pi used Raspbian
as its operating system. Given that Raspbian is a full Linux-based operating
system, libraries such as DEAP and DisPy can facilitate development of multi-
ple search heuristics or distributed cluster computing, respectively.5 To allow
for replication, we have made our parts list, source code, and results publicly
available on GitHub.6

String search configuration: The string search application leverages a stan-
dard GA to search for a given string, where this particular GA was released as
a GitHub.7 To increase the difficulty of this task, we specified a complex string
(OPT) comprising ASCII characters sampled between indices 32 and 64 and a
total length of 84.8 OPT is defined in Equation 1:

OPT = ′12th Symposium for Search−Based Software

Engineering | http : //ssbse2020.di.uniba.it/′
(1)

The fitness function defined for this study is defined as follows in Equation 2,
where ord represents a character’s Unicode integer value:

ffstring =

len(OPT)∑
i=0

|ord(TARGET [i])− ord(OPT [i])| (2)

This particular GA uses single-point crossover, single-point mutation, and a
weighted-fitness selection function (i.e., fitness directly correlated to the proba-
bility that an individual is selected). Mutation is automatically applied to the
children generated by the crossover operation, where a random gene is modified.
The GA was configured to run for a maximum of 500, 000 generations, with
a population size of 500, a crossover rate of 0.5, and a mutation rate of 1.0.
The GA can converge early if the correct string is discovered. We performed
25 experimental replicates to ensure statistical significance, using the Wilcoxon-
Mann-Whitney U-test with a significance level of p < 0.001. We compared the
GA to random search as specified by Arcuri et al. [1].

For this feasibility study, we are interested in the amount of time required
before convergence to the expected solution and the number of generations nec-
essary to reach that value, as the number of generations is set very high to ensure
convergence. To focus on execution time, we intentionally did not introduce par-
allelism or distributed processing, however such a procedure can be used on a mi-
crocomputer (e.g., Python’s multiprocessing package). Figure 1(a) compares
the number of generations required for the algorithm to converge and Figure 1(b)
compares the amount of time (seconds) required to reach convergence between
a current-generation laptop9 and the Raspberry Pis. As can be seen from these
5 See https://deap.readthedocs.io/ and http://dispy.sourceforge.net/, respectively.
6 See https://github.com/efredericks/SearchAtHome.
7 See https://gist.github.com/josephmisiti/940cee03c97f031188ba7eac74d03a4f.
8 There exist 2.7 ∗ 10126 possible combinations based on string length and characters.
9 Intel Core i7 quad-core 2.8GHz 64-bit processor, 16GB RAM, 1TB hard drive space.

Search@Home 5

figures, there exists no difference in the number of generations required to con-
verge to the optimal solution. However, a significant difference exists between
the execution times required for convergence between each device (p < 0.001).
Moreover, each experimental replicate resulted in convergence. These results are
expected given the disparity in processing capability. However, the Raspberry
Pi was able to successfully execute optimization in all cases within a reasonable
amount of time, proving feasibility of optimization on constrained devices.

(a) Number of generations. (b) Execution time.

Fig. 1: Comparison of string search results between laptop and Raspberry Pis.

SBSE Implications: We now highlight three future experiments for in situ
optimization research.

1. Distributed processing of search algorithms
2. Power concerns resulting from search
3. Implications of SBSE in production environments

Item (1) can be an interesting study of offloading SBSE tasks (e.g., require-
ments monitoring, fitness evaluation, etc.) to distributed nodes. Item (2) demon-
strates the implications of modeling power consumption as a first-class citizen in
a software model (e.g., non-functional requirements). Item (3) uses optimization
in situ to investigate the interaction of search, software artifacts, and expressed
behaviors.

4 Discussion

This paper presents Search@Home, an open-source framework for enabling in
situ SBSE research within constrained environments. Search@Home uses inex-
pensive COTS hardware providing an environment in which students and re-
searchers can quickly and effectively prototype and deploy applications that
would benefit from using real-world data to support an online search proce-
dure. For this paper, we targeted evolutionary computation, however extension
to other optimization domains (e.g., continuous optimization) is feasible as well.

We demonstrate the effectiveness of Search@Home on a string search exem-
plar to demonstrate basic search feasibility, where optimal solutions are discov-
ered in a reasonable amount of time. Future research directions for this project

6 E. Fredericks and J. Moore

include incorporation of low-cost robotics environments (e.g., iRobot Roomba,
Turtlebot, Lego Mindstorms, etc.), usage of a compute cluster (e.g., Beowulf
cluster, high-performance compute cluster, etc.), and incorporation of cloud tech-
nologies offsetting the cost of heavy evaluations (e.g., Google Cloud Functions,
Amazon Web Services Lambda functions, etc.).

Acknowledgements. This work has been supported in part by grants from the
National Science Foundation (CNS-1657061), Oakland University, and Grand
Valley State University. The views and conclusions contained herein are solely
those of the authors.

References

1. Arcuri, A., Briand, L.: A practical guide for using statistical tests to assess ran-
domized algorithms in software engineering. In: Proc. of the 33rd Intl. Conf. on
Software Engineering. pp. 1–10. ICSE ’11, ACM (2011)

2. Bertsimas, D., Thiele, A.: Robust and data-driven optimization: modern decision
making under uncertainty. In: Models, methods, and applications for innovative
decision making, pp. 95–122. INFORMS (2006)

3. Bredeche, N., Haasdijk, E., Eiben, A.: On-line, on-board evolution of robot con-
trollers. In: Artificial Evolution. Springer Berlin Heidelberg (2010)

4. Calinescu, R., Grunske, L., Kwiatkowska, M., Mirandola, R., Tamburrelli, G.: Dy-
namic qos management and optimization in service-based systems. IEEE Trans.
on Software Engineering 37(3), 387–409 (2010)

5. Lezama, F., Soares, J., Vale, Z.: A platform for testing the performance of meta-
heuristics solving the energy resource management problem in smart grids. Energy
Informatics 1(1), 35 (2018)

6. Li, D., Jin, Y., Sahin, C., Clause, J., Halfond, W.G.: Integrated energy-directed
test suite optimization. In: Proc. of the 2014 Intl. symposium on software testing
and analysis. pp. 339–350 (2014)

7. Mars, J., Hundt, R.: Scenario based optimization: A framework for statically en-
abling online optimizations. In: 2009 International Symposium on Code Generation
and Optimization. pp. 169–179. IEEE (2009)

8. Muccini, H., Sharaf, M., Weyns, D.: Self-adaptation for cyber-physical systems: a
systematic literature review. In: Proc. of the 11th Intl. Symposium on Software
Engineering for Adaptive and Self-Managing Systems. pp. 75–81 (2016)

9. Peker, M.: A fully customizable hardware implementation for general purpose ge-
netic algorithms. Applied Soft Computing 62, 1066–1076 (2018)

10. Shahriari, B., Swersky, K., Wang, Z., Adams, R.P., De Freitas, N.: Taking the
human out of the loop: A review of bayesian optimization. Proc. of the IEEE
104(1), 148–175 (2015)

11. Taherkordi, A., Loiret, F., Rouvoy, R., Eliassen, F.: Optimizing sensor network
reprogramming via in situ reconfigurable components. ACM Trans. on Sensor Net-
works (TOSN) 9(2), 1–33 (2013)

12. Wang, Y., Boyd, S.: Fast model predictive control using online optimization. IEEE
Trans. on control systems technology 18(2), 267–278 (2009)

13. Wolpert, D.H., Macready, W.G.: No free lunch theorems for optimization. IEEE
Trans. on Evolutionary Computation 1(1), 67–82 (1997)

