
(Genetically) Improving Novelty in Procedural
Story Generation

Erik M. Fredericks
School of Computing

Grand Valley State University
Allendale, USA

frederer@gvsu.edu

Byron DeVries
School of Computing

Grand Valley State University
Allendale, USA

devrieby@gvsu.edu

Abstract—Procedural story generation (PCG) tailors a unique
narrative experience for a player and can be accomplished via
multiple techniques, from matching storylets to grammar-based
generation. There exists a rich opportunity for evolutionary algo-
rithms to be applied to this domain for intelligently constructing
game narratives. This paper describes a conceptual procedure for
applying genetic improvement to a grammar-driven procedural
narrative within the context of a browser-based game.

Index Terms—novelty search, procedural story generation,
genetic improvement, grammatical evolution

I. INTRODUCTION

Procedural content generation typically focuses on devel-
oping unique experiences commonly found in genres such as
roguelikes (e.g., Nethack, Dungeon Crawl Stone Soup, etc.1),
where intelligent algorithms leverage a set of rules and/or ran-
dom chance to instantiate varying situations. Such algorithms
can lead to emergent behaviors that can enable a rich player
experience, where such behaviors are not necessarily hard-
coded by the developers.

Story generation tends to be a difficult aspect of procedural
content generation, as simply combining snippets or para-
graphs does not generally lead to a cohesive narrative. Narra-
tives can be automatically crafted using trees or grammars with
storylets (i.e., small pieces of narrative) that are “known” to
work well together. Consider the following storylet: “You enter
a new room. It is filled with lush vegetation and is quite humid.
A large crustacean lounges in the corner.” Each sentence
within the storylet can be procedurally generated using a large
bank of phrases with meta-data to enable precise matching. For
instance, the storylet can be represented as a grammar, where
words surrounded by # represent future production rules:

S 7→ #newRoom # . I t i s # ve rb # . ed wi th
a d j e c t i v e # # noun # . # randomOccur rence # .

Additional meta-data checks would be required to ensure
that a flow exists as well to avoid confusing the player
(e.g., it would not make sense for lush vegetation to exist
within a snowy environment). This paper presents early efforts
towards applying genetic improvement to procedural story
narrative. Specifically, we focus on diversifying the set of

This work has been supported by Grand Valley State University.
1See https://www.nethack.org/ and http://crawl.develz.org/, respectively.

possible cohesive narrative states generated via grammar-based
narrative storytelling. We next describe methods for procedural
storytelling, our work in progress as an illustrative example,
how we will apply genetic improvement to our story grammar,
and summarize with a discussion.

II. PROCEDURAL STORYTELLING

There exist many frameworks for enabling narrative-driven
games, including Twine and Ink.2 Each are open source
and provide an easy-to-use interface for creating text-driven
games. Games can be published as webpages or incorporated
as modules in more advanced engines (e.g., Unity, Godot,
Unreal Engine, etc.). Mason et al. recently introduced Lume,
a tool for enabling procedural narrative generation via param-
eterized node trees that use bindings to maximize narrative
coherency [1]. Tracery is an open-source tool for creating
generative text using a grammar-based system that has been
used in multiple applications, including procedural narratives,
Twitter bots, and role-playing game mechanics [2]. Tracery
has been ported to most common languages as well.

III. WORK IN PROGRESS

Figures 1 and 2 present a sample of our procedurally-
generated content. Figure 1 demonstrates a room title and de-
scription that has been generated in accordance with Simplex
noise [3] and a Tracery grammar [2], and Figure 2 illustrates
the space around the player, where the emoji faces represent a
player and non-player characters and other characters represent
Simplex noise-generated environmental features (e.g., ∆ is a
tight tunnel and ∼ is a stream).

Fig. 1: Room title and description.

Simplex noise is a technique commonly used for generating
“smooth” environmental features in game maps [4]. For this
work we are populating a two-dimensional grid with Simplex
noise values, where each value translates to a specific envi-
ronment feature. For instance, a noise value within [0.35, 0.55]

2See http://twinery.org/ and https://www.inklestudios.com/ink/, respectively.

https://www.nethack.org/
http://crawl.develz.org/
http://twinery.org/
https://www.inklestudios.com/ink/

Fig. 2: Cropped minimap of environment.

results in a room with the meta-attribute STREAM to denote
that a stream flows within the room, and we execute Tracery
to generate a relevant storylet for a STREAM-tagged grammar.
We normalize our Simplex values between [0.0, 1.0].

A sample Tracery grammar and sentence generation for a
STREAM environment is as follows, where the grammar has
been significantly reduced in scope for presentation purposes:

v a r r u l e s = {
' o r i g i n ' : [' [myPlace : # p a t h #]# l i n e # '] ,
' pa th ' : [' pa th ' , ' rock ' , ' c a v e r n wal l ' ,
' l i n e ' : [' # s t r e a m . a . c a p i t a l i z e # '] ,
' nearby ' : [' beyond t h e # p a t h # ' ,

' f a r away ' , . . .] ,
' s u b s t a n c e ' : [' l i g h t ' , ' r e f l e c t i o n s ' ,

' mis t ' , ' shadow ' , ' d a r k n e s s '] ,
' u n d e r f o o t ' , ' s t a l a g m i t e s ' , . . .] ,

' s t r eam ' : [' # s t r eam − t y p e #
s t ream − ve rb . s # # ne a r b y # '] ,

. . .
} ;
v a r g = t r a c e r y . c rea teGrammar (r u l e s) ;
c o n s o l e . l o g (g . f l a t t e n (' # o r i g i n # ')) ;

In this example, rules represents the Tracery grammar, g
is the Tracery object, and #origin# represents the starting
point of the grammar for Tracery to parse and generate a
sentence. Based on a set of grammars as illustrated, a large
number of storylets can be generated via Tracery and its
grammar constraints. We next describe how novelty search
will be applied as a genetic improvement technique for this
case study.

A. Genetic Improvement

A major focus with this game environment is to provide as
many diverse, yet cohesive, storytelling opportunities to the
player as possible. Therefore, we augment our set of Tracery
grammars with grammatical evolution [5], where our fitness is
replaced by novelty search [6]. Grammatical evolution focuses
on evolving an individual (typically a program) via a grammar
as opposed to a tree. Novelty search is an evolutionary
computation-based technique for finding as many diverse,
yet still optimal, solutions to a given problem. In general,
novelty search uses similar evolutionary operations to genetic
algorithms/grammatical evolution, however the fitness function
is typically superceded by a novelty metric.

The novelty metric (i.e., a mathematical formula for en-
couraging diversity) is used within novelty search to guide

the search process to distinct areas of the solution space. For
this application, we construct our novelty metric to fulfill
the constraints of our Simplex noise-generated map while
encouraging diversity via natural language processing (NLP)
metrics. While many advanced NLP algorithms exist for
calculating differences between sentences (where a study of
such algorithms can form the basis of future work) [7], we will
use Word2Vec for measuring similarity between sentences [8].
We anticipate training Word2Vec on open-source corpora.
Equation 1 demonstrates usage of Word2Vec for calculating
sentence similarity (following training).

sim(µi, µj) = word2vec.model(µi, µj), (1)

where µi and µj represent sentences generated from Tracery
grammars. Equation 2 next shows our novelty score calcula-
tion:

novelty(k) =
1

k

k∑
i=0,j=0,i6=j

sim(µi, µj) (2)

The most diverse solutions (i.e., passing a novelty threshold
score) are added to a novelty archive that is maintained
throughout the course of the search procedure, where this
archive is returned as output following search completion.
Additional tags may be necessary to ensure that generated
solutions are feasible from a grammatical perspective.

IV. DISCUSSION

This paper has introduced an early proof-of-concept for au-
tomatically improving novelty in procedurally-generated story-
lines for games. The proof-of-concept uses Twine to prototype
the game environment, Tracery for enabling grammar-based
storylet generation, and Simplex noise for generating a cohe-
sive environment. We plan to further augment this prototype
with a novelty-search based grammatical evolution heuristic
for generating diverse Tracery grammars and Word2Vec to
measure similarity.

REFERENCES

[1] S. Mason, C. Stagg, and N. Wardrip-Fruin, “Lume: a system for procedu-
ral story generation,” in Proceedings of the 14th International Conference
on the Foundations of Digital Games, 2019, pp. 1–9.

[2] K. Compton, B. Kybartas, and M. Mateas, “Tracery: an author-focused
generative text tool,” in International Conference on Interactive Digital
Storytelling. Springer, 2015, pp. 154–161.

[3] K. Perlin, “Noise hardware. in real-time shading,” SIGGRAPH Course
Notes, 2001.

[4] A. Patel. Making maps with noise functions. [Online]. Available:
https://www.redblobgames.com/maps/terrain-from-noise/

[5] M. O’Neill and C. Ryan, “Grammatical evolution,” IEEE Transactions
on Evolutionary Computation, vol. 5, no. 4, pp. 349–358, 2001.

[6] J. Lehman and K. O. Stanley, “Exploiting open-endedness to solve
problems through the search for novelty,” in Proceedings of the Eleventh
International Conference on Artificial Life, ser. ALIFE XI. MIT Press,
2004.

[7] S. Al-Saqqa and A. Awajan, “The use of word2vec model in sentiment
analysis: A survey,” in Proceedings of the 2019 International Conference
on Artificial Intelligence, Robotics and Control, 2019, pp. 39–43.

[8] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean, “Dis-
tributed representations of words and phrases and their compositionality,”
Advances in neural information processing systems, vol. 26, pp. 3111–
3119, 2013.

https://www.redblobgames.com/maps/terrain-from-noise/

	Introduction
	Procedural Storytelling
	Work in Progress
	Genetic Improvement

	Discussion
	References

