
Generative Art via Grammatical Evolution
Erik M. Fredericks
School of Computing

Grand Valley State University
Allendale, Michigan

Email: frederer@gvsu.edu

Abigail C. Diller
School of Computing

Grand Valley State University
Allendale, Michigan

Email: dillerab@mail.gvsu.edu

Jared M. Moore
School of Computing

Grand Valley State University
Allendale, Michigan

Email: moorejar@gvsu.edu

Abstract—Generative art produces artistic output via algo-
rithmic design. Common examples include flow fields, particle
motion, and mathematical formula visualization. Typically an
art piece is generated with the artist/programmer acting as a
domain expert to create the final output. A large amount of
effort is often spent manipulating and/or refining parameters or
algorithms and observing the resulting changes in produced im-
ages. Small changes to parameters of the various techniques can
substantially alter the final product. We present GenerativeGI, a
proof of concept evolutionary framework for creating generative
art based on an input suite of artistic techniques and desired
aesthetic preferences for outputs. GenerativeGI encodes artistic
techniques in a grammar, thereby enabling multiple techniques
to be combined and optimized via a many-objective evolutionary
algorithm. Specific combinations of evolutionary objectives can
help refine outputs reflecting the aesthetic preferences of the
designer. Experimental results indicate that GenerativeGI can
successfully produce more visually complex outputs than those
found by random search.

Index Terms—generative art, evolutionary algorithms, gram-
matical evolution, genetic improvement

I. INTRODUCTION

Generative art is produced via programming techniques,
typically via algorithmic design or artificial intelligence [1]–
[5].1 Algorithmic techniques generally focus on visualization
of some form of mathematical formula or data analysis tech-
nique and may be parameter-driven to fine-tune the output. For
example, a sine wave can be visualized by iterating over pairs
of calculated (x, y) coordinates and then a graphics library
(e.g., Python - Pillow (PIL), p5.js, etc.) may be used to draw
and color each point as desired. Figure 1 demonstrates the
visualization of y = 75.0 ∗ sin(x).2

Visualization of algorithmic techniques generally falls
within two categories: expressing behaviors/trends in data
and/or algorithms or for artistic purposes [1], [2]. Often
visual interest can be created when two or more techniques
are combined. Many generative techniques are amenable to
encoding as genes within an evolutionary process given that
parameters can change the behavior of the technique and
consequently the resulting image [4], [5]. For example, config-
urable parameters for Figure 1 include mathematical variables
(e.g., amplitude, period, spacing between each point) as well

We gratefully acknowledge support from the Michigan Space Grant Con-
sortium (award 80NSSC20M0124) and Grand Valley State University.

1For the purposes of this paper we focus on algorithmic techniques.
2Based on https://p5js.org/examples/math-sine-wave.html.

Fig. 1: Visualization of sine wave in p5.js.

as drawing parameters (e.g., palette, point size, etc). Gram-
matical evolution (GE) is a subset of genetic programming
that represents its genome in a grammar-based format [6].
The nature of the grammar introduces inherent constraints
within the genome, ideally reducing the amount of invalid
individuals generated over the course of execution. Grammar-
based approaches have also been recently used in genetic
improvement applications [7]. As such, manual selection of
generative techniques and their subsequent parameters can
often be a time-consuming process to create an ideal output.
Moreover, algorithmically assessing the “quality” of generated
outputs can be difficult without human intervention [8].

We present GenerativeGI, a framework for creating gen-
erative art via GE. GenerativeGI takes as input a suite of
parameterized generative techniques yielding a set of artistic
outputs based around their evolved combination, with the
intent being to generate new and interesting combinations of
techniques and parameters. For example, Figure 1 may be
combined with a pixel sorting technique (i.e., ordering pixels
in an image based on colors, intensities, etc.) to generate a
“glitch art” output as seen in Figure 2.

GenerativeGI comprises two main steps: grammar gener-
ation and evolution. First, a domain expert must translate a
suite of generative art techniques to a grammar-based format.
Specifically, we use the Tracery library [9] for lightweight
grammar manipulation. A separately-callable function must be
included for visualizing the technique within GenerativeGI.
Next, the fitness function(s) for the evolutionary process must
be configured based on desired output style, run time, etc. For
example, a “glitch art” style can be accomplished by maxi-

https://p5js.org/examples/math-sine-wave.html


Fig. 2: Sine wave output combined with pixel sorting.

mizing the difference between pixel values of output images
(e.g., inducing general noise in the output images). To manage
competing concerns in fitness functions we use Lexicase, a
many-objective approach for evolutionary selection [10].

Experimental results indicate that GenerativeGI can gen-
erate significantly more desirable (i.e., with respect to the
aesthetic preferences of the designer and the specified fitness
functions) output images than can be found via random search.
The remainder of this paper is organized as follows. Sec-
tion II presents relevant background information on generative
art and grammatical evolution. Section III then details the
GenerativeGI technique. Following, Section IV presents our
experimental results and Section V highlights related work.
Lastly, Section VI summarizes our findings and presents future
research directions.

II. BACKGROUND

A. Generative Art

Generative art is produced through functions often based on
mathematical or computational principles that map to a visual
medium, where outputs can include artistic endeavors and
algorithm/data visualization techniques [1]–[5]. Introducing
students to programming with generative art is an effective
approach as the resulting visual products can provide fast
and interesting feedback to those still learning (i.e., creative
coding) [11]–[15]. Furthermore, generative techniques have
also been applied to Internet of Things environments for
expressing art in real-world settings [16].

Figure 3 presents a subset of the techniques used in this
paper.3 The dithering technique is also used in the genome
but not shown in Figure 3 for presentation purposes. For this
project each technique can act upon the entirety of the image
canvas and will minimally accept an image object and color
palette as input. Specifics of the techniques are described as
follows:

Stipple: Stippling is a drawing technique that uses a large
number of dots with varied spacing to create a texture or
gradient effect. Parameters include the density and color of
drawn points. Figure 3a illustrates this technique.

3Note: we enumerate each of the techniques used in our public repository:
https://github.com/GI2023-GenerativeGI/GI2023.

Cellular Automata: A cellular automata is a rules-based
technique for procedurally drawing shapes/figures. Cells are
typically drawn based upon the state of their neighboring cells,
with common examples including Conway’s Game of Life and
the Wolfram automata [17]. Figure 3b presents a sample based
on the Wolfram ruleset.4 Parameters include the colors for each
cell as well as the ruleset itself.

Pixel Sorting: Pixel sorting orders the pixels of an image
based upon a desired outcome, where sample outcomes include
sorting based on hue, lightness, average red/green/blue (RGB)
values, or other measures. Figure 2 presents a pixel sorted
version of the sine wave shown in Figure 1. We use an open
source Python module for pixel sorting.5 All non file-based
parameters available in the included pixel sorting module (e.g.,
sorting algorithm, thresholds, etc.) are used to specify its
behaviors when acting upon an image.

Circle Packing: Circle packing is an algorithm for filling
a space with as many circles as possible without overlap.
Figure 3c presents a sample output. Its input is the number
of attempts to place a circle (i.e., to avoid timing out if a
suitable location cannot be easily found).

Flow Field: Flow fields are visualizations of vector fields
that generally illustrate fluid motion, where a grid of values
is instantiated based on an underlying noise function (e.g.,
Perlin [18], Simplex [19], etc.) governing the direction that
particles and/or vertices may take as they traverse the grid [2],
[3]. Figure 3d provides a sample flow field where the noise
values are mapped between 0 and 2π. Parameters for the flow
fields here include the type of noise mapping (i.e., flow style),
noise resolution (i.e., zoom level), and number of particles.

Drunkard’s Walk: The Drunkard’s walk is an random algo-
rithm in which an object probabilistically selects a direction
to move each step of execution and then draws itself at that
location. This technique can lead to interesting visual patterns
(c.f., Figure 3e) and has been used for many applications,
including physics and biological models [20] as well as
procedural content generation [21].

Dithering: In image applications, dithering is typically used
to provide the illusion of color depth and/or texture for images
with a limited palette [22], [23]. These techniques often use
a small image pattern to represent pixel values (e.g., shading,
material textures, etc).6

B. Grammatical Evolution

GE is a subset of evolutionary computation, specifically
genetic programming [24], that searches for a solution using a
grammar-based genome [6], [7]. A grammar-based approach
enables the domain expert to constrain the space of input
solutions to those defined within the rules of the genome
and moreover can be a target for genetic improvement [7].
The remainder of the evolutionary operators (i.e., selection,
mutation, crossover) are similar to those found in genetic

4See https://p5js.org/examples/simulate-wolfram-ca.html.
5See https://github.com/satyarth/pixelsort/.
6Note: this technique is not pictured as it is difficult to visualize when

printed in monochrome in a small space.

https://github.com/GI2023-GenerativeGI/GI2023
https://p5js.org/examples/simulate-wolfram-ca.html
https://github.com/satyarth/pixelsort/


(a) Stippled (b) Cellular Automata (c) Circle Packing (d) Flow Field (e) Drunkard’s Walk

Fig. 3: Generative art techniques used as genomic elements in the evolutionary process.

algorithms and genetic programming. While any form of gram-
mar representation is feasible with GE, we use the Tracery
library [9] for ease of use.
Tracery: Tracery7 is a framework for enabling procedural
text generation in a grammar-based format [9]. Specifically, a
grammar snippet in Tracery can be represented in a Python
dictionary as follows (note: Tracery has been adapted to
multiple programming languages):
rules = {

’ordered_pattern’: [’#techniques#’],
’techniques’: [’#technique#’,

’#techniques#,#technique#’],
’technique’: [’stippledBG’,

’flowField’],
...

}

Here, the name of the production is represented as a dic-
tionary key (i.e., ordered_pattern, techniques, etc.)
and can be expanded when placed between # symbols in the
dictionary’s value field. In this sample, ordered_pattern
is the entry point to the grammar that is then expanded with
the techniques production. techniques may either end
with a specific technique or be expanded recursively (i.e.,
#techniques#, #technique#). If there are multiple
options within a production, Tracery will select and return
a random value. A sample flattened grammar (i.e., produc-
tions expanded in-code) is as follows (for the purposes of
this example, we simplify the production to only show the
technique name and abstract the numerous parameters that
configure each technique):
stippledBG(params),stippledBG(params),
flowField(params),stippledBG(params),

GenerativeGI would accept this string as input and sequen-
tially execute each specified technique (in this case, stippling
twice, drawing a flow field, and then stippling once more).

Taking into account that each genome is of variable length,
we use single-point crossover and single-point mutation to
generate new individuals. For crossover, we select a random
index into each parent and swap genomes at that point to
generate children, ensuring that each governing technique
(e.g., stippledBG(params)) remains intact.

Two forms of mutation can be applied at a random index.
First, the technique at the selected index may be replaced with

7See http://www.crystalcodepalace.com/tracery.html.

a new technique (or techniques, depending on the flattening
of the grammar) (i.e., mut1) significantly changing the
generated output image. Second, the technique’s parameters
may be randomized (i.e., mut2), thereby altering the
appearance of the produced image specific to the referenced
technique (as opposed to fully regenerating the grammar
at that point). For example, assume that the technique
at the selected index returned flowField(’edgy’,
0.01) (i.e., a flow field maps a noise function to “hard”
angles and expresses a large amount of detail from its
noise function). Flattening the grammar at that index
could return a new technique or recursively return a set
of techniques. For mut1, the index could be replaced
by dither(’halftone’), flowField(’edgy’,
0.025), dither(’grayscale’). In this case, flattening
the grammar produced a recursive result that yielded three
new techniques that were injected into the individual. For
mut2, the parameters for flowField can be randomized
according to their specified valid ranges within the grammar.

C. Lexicase Selection
We use the Lexicase selection operator for selection events

within the evolutionary process. Lexicase selection is a many-
objective algorithm for searching through a large search space
with multiple competing objectives [10]. Originally proposed
for genetic programming, Lexicase selection has been applied
to program synthesis [25], evolutionary robotics [26], [27], and
geosciences [28], among others. In contrast to pareto-based
multi-objective optimization approaches like NSGA-III [29],
Lexicase evaluates a sample of individuals on an objective-
by-objective basis. During each selection event, a sample of
the population is taken along with a random shuffling of the
objectives. A comparison of the sampled individuals is done
based on performance in the first objective. If one individual
is better than the rest of the sample it is selected. However, if
two or more individuals are tied, the tied individuals advance
to comparison based on the next objective and the process
repeats. If all objectives are exhausted and there are still two or
more individuals with similar performance, a random selection
from the remaining individuals is used to choose an individual.

Considering the real-valued objectives that we use in this
study, we employ ϵ-Lexicase selection [30], a variant that con-
siders two individuals tied if the performance of an individual
is within an ϵ of the max fitness individual. This is important in

http://www.crystalcodepalace.com/tracery.html


real-valued fitness objectives as small differences in calculated
fitness (e.g. distance traveled in a legged robot [31]) may not
manifest as substantial changes to the observable output of
evolved solutions. We use ϵ = 0.85 in this study based upon
empirical evidence.

III. APPROACH & RUNNING EXAMPLE

GenerativeGI is an evolutionary framework for enabling
the creation of generative artwork via grammatical evolution
and many-objective search. First, we present our motivating
example and then discuss the specifics of GenerativeGI.

A. Motivating Example

For illustrative purposes, consider a flow field algorithm
(c.f., Figure 3d) in which a vector field is generated via a
noise function and mapped to a specified angle range [3].
One approach for implementing a flow field is to instantiate
a list of particles (comprising at minimum (x, y) coordinates)
that each draw a specified shape at their current position and
then update their position based on flow field parameters (e.g.,
offset from current position, particle lifetime, etc.) and the
current position’s grid angle.

B. GenerativeGI Process

GenerativeGI creates images by layering the output from
generative art techniques upon a virtual image canvas and
therefore requires that each technique be implemented within
our framework, where the selection, ordering, and instantiation
of each technique is guided via the evolutionary process.

Figure 4 presents a data-flow diagram of GenerativeGI and
we next describe each step in detail.

(1) Convert 
Techniques 

to 
Grammar

(2) 
Translate 

Technique

(3) 
Configure 

Search

(4) Execute 
Search

(5) Output 
Best Images

grammar

techniques
grammar

Codebase
Generative 
Techniques

Configurable 
Parameters

Fitness 
Functions

not done

search
parameters

population

final
population

techniques
grammar

fitness
functions

evolutionary
parameters

Legend

Process

Flow

Data store

Legend

Process

Flow

Data store

techniques codebase

Fig. 4: Data flow diagram for GenerativeGI.

Step (1) - Convert Techniques to Grammar: GenerativeGI
requires a suite of generative art techniques as input. As
such, each technique must be self-contained, parameterized,
and translated to a grammar production. A sample grammar
conversion for a flow field is as follows in Listing 1.
rules = {
...
’technique’ : [’flow-field’, ...],
’flow-field’ : ’#flow-field-type#:#palette#:#flow-

field-zoom#’,
’flow-field-type’ : [’edgy’, ’curves’],

’flow-field-zoom’ : [str(x) for x in np.arange
(0.001, 0.5, 0.001)],

...
}

Listing 1: Flow field grammar production.

A grammar generated based on Listing 1 will yield a
random type of flow field and random zoom level when
flattened (based on a pre-selected list of floating point values
that are converted to strings per Tracery’s requirements).
Note: the grammar does not necessarily need to represent all
possible parameters. For this example, the image, number of
rows/columns, and color palette can be passed in manually or
added to the grammar, as desired. In this case, the number of
rows/columns match the image height/width, respectively. The
remaining parameters would be passed based on the parsed
grammar in Listing 1.
Step (2) - Translate Technique: Each included technique
must be defined as a self-contained function that accepts
minimally an image as input. Specifically, the function must be
callable by GenerativeGI as the grammar is parsed and eval-
uated sequentially. Each function will overlay its output upon
the passed image as specified by the generative technique.
Step (3) - Configure Search: Next, the evolutionary search
process must be configured in terms of execution type (i.e.,
many-objective, single-objective, or random), number of gen-
erations to execute, population size, and the number of in-
dividuals to create via crossover/mutation. Given that each
genome is of variable length we use single-point crossover
and mutation, respectively (c.f., Section II-B). The fitness
function(s) must also be defined to ensure that the search
converges to a set of ideal outputs. For the purposes of this
paper, we focused on minimizing the number of duplicate
genes across individuals (i.e., ffmin(genome)), maximizing the
diversity of the included techniques (i.e., ffmax(techniques)),
and maximizing the differences between generated images
(i.e., ffmax(RMS) and ffmax(Chebyshev)). We use both a
pairwise root mean square (RMS) and Chebyshev distance
metric to measure the differences between pixel values for
two images. For both distance metrics, we perform a pairwise
comparison between an image and every other image in the
current population and then average based on the largest
discovered distance value, representing the overall novelty of
that particular image with respect to the other members [32].
We further detail our evolutionary configuration in Section IV.
Step (4) - Execute Search: The evolutionary process is then
executed according to its configured parameters. Each member
of the population is evaluated per its flattened grammar, where
each generative technique specified in the genome is executed
sequentially on the individual’s image.

GenerativeGI then executes for the configured number
of generations and performs the crossover/mutation/selection
operators for each generation. New individuals generated via
the crossover and mutation operators retain the data within
their image object, however their grammar is updated with
respect to the operation performed. Selection of individuals is
managed based upon the configured search technique, where



many-objective search uses Lexicase selection [10], single-
objective search uses tournament selection, and no selection
is necessary for random search.
Step (5) - Output Best Images: GenerativeGI will output
the final population of images upon completion of the search
and denote those considered to be “most fit” according to the
configured fitness function criteria.

IV. EXPERIMENTAL RESULTS

This section details our experimental configuration and
results, respectively.

A. Experimental Configuration

For this paper, we translated a set of generative art tech-
niques to use Python’s Pillow library8 for inclusion in Gen-
erativeGI. Each technique was then encoded to a Tracery
grammar comprising the name of the technique, configuration
parameters, and specifications for valid ranges/values for the
parameters. Overall, eight techniques are targets for evolu-
tion in this paper: circle packing, drunkard’s walk, stippling,
dithering, pixel sorting, cellular automata, and flow field (two
separate implementations). The specifics of each technique
were briefly described in Section II-A.

An individual’s grammar, comprising a suite of techniques
and instantiated parameters, is then expressed sequentially
while drawing on its image object, where the image object
is not cleared during evolutionary crossover and mutation. We
intentionally preserve the parent’s drawing canvas (i.e., im-
age object) to provide more aesthetically-interesting outputs.
Additionally, the execution time for each individual technique
may vary due to the complexity of the technique itself (e.g.,
each individual pixel may need to be iterated over multiple
times).

We compare and contrast three experimental treat-
ments: many-objective search (i.e., Lexicase selection us-
ing ffmax(RMS), ffmin(genome), ffmax(techniques), and
ffmax(Chebyshev)), single-objective search (i.e., only using
ffmax(RMS) for evaluation), and an equivalent amount of
randomly-generated solutions [33]. To optimize processing
time for the random treatment we performed 50 evaluation
cycles, each with 100 randomly-generated solutions. For sta-
tistical evaluation we performed 10 experimental replicates for
each treatment.

Parameter Value
Experimental replicates 10
Image size (pixels) 1000 x 1000
Number of generative techniques 8
Generations 100
Population size 100
Crossover rate 0.5
Mutation rate 0.4
Number of Lexicase objectives 4
ϵ (Lexicase - many-objective) 0.85

TABLE I: Evolutionary parameter configuration.

8See https://python-pillow.org/.

B. Empirical Evaluation

Figure 5 presents boxplots of the novelty scores for the
“most novel” individual for each replicate between experi-
mental treatments (i.e., Lexicase, single objective, and ran-
dom). We compare the treatments against each other using
the Wilcoxon rank-sum test with Bonferroni correction. The
novelty scores for Lexicase versus random are statistically
significant (p < 0.01) as is single-objective versus random (p
< 0.03).

Fig. 5: Novelty score for the most novel individual per
replicate across treatments.

Figure 6 shows the mean of the population’s gene unique-
ness scores (i.e., ffmin(genome) for each replicate between
experimental treatments. This minimization objective repre-
sents diversity within our population as its value reflects
the number of other individuals in the population with the
same gene. Lower scores indicate a more diverse population.
Random has such a low score relative to Lexicase and single
objective as the individuals are generated randomly and not
evolved, therefore it is rare that many duplicate genes ex-
ist. Random is significantly different to Lexicase and single
objective with p < 0.001 for each. Lexicase is significantly
different (p < 0.001) than single objective indicating that it is
better at maintaining a diverse population producing a wider
variety of artistic outputs.

Figure 7 presents a set of images generated from the most
fit individuals from each experimental treatment, where the
left column shows images from many-objective search (i.e.,
Lexicase selection), the middle column shows random search,
and the right column shows single-objective search.

Both single- and many-objective search tended to converge
to multiple techniques in the resulting image, whereas random
search tended to have less techniques with more “blank space”
within its outputs. This convergence mainly stems from our
fitness goals of maximizing pixel differences between images,
thereby encouraging more distinctive features. This outcome
will also result in less “negative space” as a byproduct, where
negative space may be a feature of interest (in which case,
an additional fitness function would need to be introduced
to pressure the evolutionary process). While these results

https://python-pillow.org/


Fig. 6: Population mean genome uniqueness score per repli-
cate across treatments. Lower values indicate a more diverse
population.

are encouraging for a proof of concept study, quantifying
“aesthetics” within an environment is a non-trivial problem
and as such is a target for future study and is discussed within
Section V.

We included Lexicase selection to enable many-objective
search, given the large possible search space of this application
(i.e., number of techniques, number of possible parameter
values, etc.). For this proof of concept experiment we only
included four objectives. From prior experiments, however,
Lexicase tends to excel with a larger number of fitness
functions [34]. As future work, we intend to significantly
expand our suite of fitness functions to further expand the
artistic possibilities of the software.

Additionally, as outputs were generated (per replicate) we
noted that Lexicase selection tended to converge towards a
set of common outputs, where those outputs were generally
governed by a small set of generative techniques particular
to that replicate (e.g., flow field and pixel sorting, stippling
and cellular automata, etc.). While such a result may be
desirable given the evolutionary process (i.e., to converge to
a common solution) we also understand that a set of artistic
outputs ideally would be relatively distinct from each other to
enable the generative artist a wide range of diverse choices. To
mitigate these concerns we would further propose expanding
our fitness functions and suite of generative techniques as
future work.
Threats to Validity: This research is intended as a proof-
of-concept study to determine the feasibility of directing the
creation of generative art via grammar-based optimization.
One threat to validity lies in the derivation and validity of the
fitness functions as we were mainly interested in maximizing
difference (i.e., yielding “glitch art”). Another threat to validity
lies in the image sizes, as we set them to be 1000 x 1000 pixels
in size (a relatively small image in comparison to the larger
resolutions found in traditional digital artwork) and therefore
have a reduced resolution to draw upon and compare/evaluate.
A third threat lies in the small number of art techniques as we

mainly applied techniques with which we were familiar. An
additional threat lies in the artistic merit of these outputs with
respect to formal art theory.

V. RELATED WORK

This section highlights relevant related work on creating
generative art via artificial intelligence (AI) techniques and
other search heuristics.

A. Generative Art via Artificial Intelligence

AI-driven art has recently exploded in popularity, with
current techniques including diffusion-based techniques (e.g.,
DALL-E, Midjourney, Stable Diffusion, etc.) and VQGAN-
CLIP [15], [35], [36]. Such techniques are typically rooted in
deep learning approaches (such as GPT-3 [37]) that leverage
a massive suite of source images and are prompt-driven (i.e.,
based on text input from users and then iterated/configured as
needed). While such techniques are quite powerful and can
result in relevant outputs, they require both a massive dataset
and large amounts of computing capabilities. In contrast, Gen-
erativeGI only requires a suite of input generative techniques
and the computing power to execute evolutionary search.

B. Generative Art via Search Heuristics

Liu and Liu leverage a tree-based genetic algorithm, sup-
ported by a human operator for evaluation as desired, to visu-
alize 3D models of mathematical formulae [4]. De Smedt et
al. use an existing generative art framework, NodeBox, for
use in an evolutionary computation-driven application for
creating environments for game worlds [5]. While each of
these are exploring a similar domain, GenerativeGI provides a
grammar-based approach that enables fine-tuned control over
the input drawing techniques.

Johnson also provides a taxonomy of fitness metrics for
evolutionary art/music, where such metrics are a non-trivial
problem as human preferences must be considered in the
outputs [8]. This taxonomy in particular can serve as an
excellent resource for future studies in which different fitness
functions are evaluated within our framework.

VI. DISCUSSION

This paper has presented GenerativeGI, a framework for
optimizing grammars with the intent of creating generative
artwork. We provided a proof-of-concept empirical evaluation
to demonstrate its effectiveness in comparison to random
search. Experimental results suggest that guided optimization
can provide far more interesting and aesthetically pleasing
outputs than can be found randomly.

This project initially started as an approach for automat-
ically creating and generating artwork via algorithmic tech-
niques, however the research potential for this project is quite
vast. Specifically, we anticipate near-term future directions
for this project to include exploring different forms of fitness
functions (especially those proposed by Johnson [8]), incor-
porating human feedback within the evolutionary process, and
augmenting the classification and comparison of outputs to
provide a more intertwined and natural result.



Fig. 7: A sample of the images generated across treatments. Lexicase Selection and Single Objective are individuals that have
evolved over 100 generations while Random Generation represents the random initial state generated by the grammar.



REFERENCES

[1] M. A. Boden and E. A. Edmonds, “What is generative art?” Digital
Creativity, vol. 20, no. 1-2, pp. 21–46, 2009.

[2] A. G. Forbes, T. Höllerer, and G. Legrady, “Generative fluid profiles
for interactive media arts projects,” in Proceedings of the Symposium
on Computational Aesthetics, 2013, pp. 37–43.

[3] B. Cabral and L. C. Leedom, “Imaging vector fields using line integral
convolution,” in Proceedings of the 20th annual conference on Computer
graphics and interactive techniques, 1993, pp. 263–270.

[4] H. Liu and X. Liu, “Generative art images by complex functions based
genetic algorithm,” Trends in Computer Aided Innovation, pp. 125–134,
2007.

[5] T. D. Smedt, L. Lechat, and W. Daelemans, “Generative art inspired by
nature, using nodebox,” in European Conference on the Applications of
Evolutionary Computation. Springer, 2011, pp. 264–272.

[6] C. Ryan, J. Collins, and M. O. Neill, “Grammatical evolution: Evolving
programs for an arbitrary language,” in Genetic Programming. Springer,
1998, pp. 83–96.

[7] W. B. Langdon, “Genetic improvement of genetic programming,” in
2020 IEEE Congress on Evolutionary Computation (CEC). IEEE, 2020,
pp. 1–8.

[8] C. G. Johnson, “Fitness in evolutionary art and music: a taxonomy and
future prospects,” Fitness in evolutionary art and music: a taxonomy
and future prospects, vol. 9, no. 1, pp. 4–25, 2016.

[9] K. Compton, B. Kybartas, and M. Mateas, “Tracery: an author-focused
generative text tool,” in International Conference on Interactive Digital
Storytelling. Springer, 2015, pp. 154–161.

[10] L. Spector, “Assessment of problem modality by differential perfor-
mance of Lexicase selection in genetic programming: A preliminary
report,” in Proceedings of the 14th Annual Conference Companion on
Genetic and Evolutionary Computation. Philadelphia, Pennsylvania,
USA: ACM, 2012, pp. 401–408.

[11] I. Greenberg, Processing: creative coding and computational art.
Apress, 2007.

[12] I. Bergstrom and R. B. Lotto, “Code bending: A new creative coding
practice,” Leonardo, vol. 48, no. 1, pp. 25–31, 2015.

[13] K. Peppler and Y. Kafai, “Creative coding: Programming for personal
expression,” vol. 30, no. 2008, p. 314, 2005.

[14] D. Shiffman, S. Fry, and Z. Marsh, The nature of code. D. Shiffman,
2012.

[15] N. Dehouche and K. Dehouche, “What is in a text-to-image prompt:
The potential of stable diffusion in visual arts education,” arXiv preprint
arXiv:2301.01902, 2023.

[16] L. S. Vestergaard, J. Fernandes, and M. Presser, “Creative coding within
the internet of things,” in 2017 Global Internet of Things Summit
(GIoTS). IEEE, 2017, pp. 1–6.

[17] J. Kari, “Theory of cellular automata: A survey,” Theoretical computer
science, vol. 334, no. 1-3, pp. 3–33, 2005.

[18] K. Perlin, “Noise hardware. in real-time shading,” SIGGRAPH Course
Notes, 2001.

[19] M. Olano, K. Akeley, J. C. Hart, W. Heidrich, M. McCool, J. L. Mitchell,
and R. Rost, “Real-time shading,” in ACM SIGGRAPH 2004 Course
Notes, 2004, pp. 1–es.

[20] G. H. Weiss and R. J. Rubin, “Random walks: theory and selected
applications,” Advances in Chemical Physics, vol. 52, pp. 363–505,
1983.

[21] J. Doran and I. Parberry, “Controlled procedural terrain generation using
software agents,” IEEE Transactions on Computational Intelligence and
AI in Games, vol. 2, no. 2, pp. 111–119, 2010.

[22] W. Chau, S. Wong, and S. Wan, “A critical analysis of dithering algo-
rithms for image processing,” in IEEE TENCON’90: 1990 IEEE Region
10 Conference on Computer and Communication Systems. Conference
Proceedings. IEEE, 1990, pp. 309–313.

[23] Lux. Dithering for pixel artists. [Online]. Available: https:
//pixelparmesan.com/dithering-for-pixel-artists/

[24] J. R. Koza, “Genetic programming as a means for programming com-
puters by natural selection,” Statistics and Computing, vol. 4, no. 2, pp.
87–112, 1994.

[25] T. Helmuth, N. F. McPhee, and L. Spector, Lexicase Selection for
Program Synthesis: A Diversity Analysis. Cham: Springer International
Publishing, 2016, pp. 151–167.

[26] J. M. Moore and A. Stanton, “Lexicase selection outperforms previous
strategies for incremental evolution of virtual creature controllers,” in
Proceedings of the 14th European Conference on Artificial Life. Lyon,
France: MIT Press, 2017, pp. 290–297.

[27] J. Huizinga and J. Clune, “Evolving Multimodal Robot Behavior
via Many Stepping Stones with the Combinatorial Multi-Objective
Evolutionary Algorithm,” Evolutionary Computation, pp. 1–34, 11
2021. [Online]. Available: https://doi.org/10.1162/evco a 00301

[28] Y. He, C. Aranha, A. Hallam, and R. Chassagne, “Optimization of
subsurface models with multiple criteria using lexicase selection,”
Operations Research Perspectives, vol. 9, p. 100237, 2022.
[Online]. Available: https://www.sciencedirect.com/science/article/pii/
S2214716022000124

[29] K. Deb and H. Jain, “An evolutionary many-objective optimization
algorithm using reference-point-based nondominated sorting approach,
part i: solving problems with box constraints,” IEEE transactions on
evolutionary computation, vol. 18, no. 4, pp. 577–601, 2013.

[30] W. La Cava, L. Spector, and K. Danai, “Epsilon-lexicase selection for re-
gression,” in Proceedings of the Genetic and Evolutionary Computation
Conference 2016. Denver, Colorado, USA: ACM, 2016, pp. 741–748.

[31] J. M. Moore and A. Stanton, “Tiebreaks and diversity: Isolating effects in
lexicase selection,” in Proceedings of the 16th International Conference
on the Simulation and Synthesis of Living Systems. Tokyo, Japan: ACM,
2018, pp. 590–597.

[32] J. Lehman and K. O. Stanley, “Novelty search and the problem with
objectives,” in Genetic programming theory and practice IX. Springer,
2011, pp. 37–56.

[33] A. Arcuri and L. Briand, “A practical guide for using statistical tests to
assess randomized algorithms in software engineering,” in Proceedings
of the 33rd International Conference on Software Engineering, ser. ICSE
’11. ACM, 2011, pp. 1–10.

[34] A. Stanton and J. M. Moore, “Lexicase selection for multi-task evolu-
tionary robotics,” Artificial Life, vol. 28, no. 4, pp. 479–498, 2022.

[35] K. Crowson, S. Biderman, D. Kornis, D. Stander, E. Hallahan, L. Cas-
tricato, and E. Raff, “Vqgan-clip: Open domain image generation and
editing with natural language guidance,” in European Conference on
Computer Vision. Springer, 2022, pp. 88–105.

[36] J. Ploennigs and M. Berger, “Ai art in architecture,” arXiv preprint
arXiv:2212.09399, 2022.

[37] L. Floridi and M. Chiriatti, “Gpt-3: Its nature, scope, limits, and
consequences,” Minds and Machines, vol. 30, no. 4, pp. 681–694, 2020.

https://pixelparmesan.com/dithering-for-pixel-artists/
https://pixelparmesan.com/dithering-for-pixel-artists/
https://doi.org/10.1162/evco_a_00301
https://www.sciencedirect.com/science/article/pii/S2214716022000124
https://www.sciencedirect.com/science/article/pii/S2214716022000124

	Introduction
	Background
	Generative Art
	Grammatical Evolution
	Lexicase Selection

	Approach & Running Example
	Motivating Example
	GenerativeGI Process

	Experimental Results
	Experimental Configuration
	Empirical Evaluation

	Related Work
	Generative Art via Artificial Intelligence
	Generative Art via Search Heuristics

	Discussion
	References

