
Software Engineering for Intelligent and
Autonomous Systems (SEfIAS)

Report from the GI Dagstuhl Seminar 18343
August 19–24 2018, Schloss Dagstuhl

Edited By:

Simos Gerasimou
Thomas Vogel
Ada Diaconescu

ar
X

iv
:1

90
4.

01
51

8v
2

 [
cs

.S
E

]
 3

 A
pr

 2
01

9

Editors
Simos Gerasimou
Department of Computer Science
University of York, UK
simos.gerasimou@york.ac.uk

Thomas Vogel
Department of Computer Science
Humboldt-Universität zu Berlin, DE
thomas.vogel@informatik.hu-berlin.de

Ada Diaconescu
Computer Science and Networks department
Télécom ParisTech, FR
ada.diaconescu@telecom-paristech.fr

Published online with open access
Publication date (April, 2019)

License

This work is licensed under a Creative Commons Attribution 3.0 Unported license (CC-BY 3.0):
http://creativecommons.org/licenses/by/3.0/legalcode.
In brief, this license authorizes each and everybody to share (to copy, distribute and transmit) the
work under the following conditions, without impairing or restricting the authors’ moral rights:

• Attribution: The work must be attributed to its authors.

Report from the GI Dagstuhl Seminar 18343
Software Engineering for Intelligent and Autonomous Systems

Edited by
Simos Gerasimou1, Thomas Vogel2, Ada Diaconescu3

1 University of York, UK, simos.gerasimou@york.ac.uk
2 Humboldt-Universität zu Berlin, DE, thomas.vogel@informatik.hu-berlin.de
3 Télécom ParisTech, FR, ada.diaconescu@telecom-paristech.fr

Abstract
Software systems are increasingly used in application domains characterised by uncertain
environments, evolving requirements and unexpected failures; sudden system malfunctioning
raises serious issues of security, safety, loss of comfort or revenue. During operation, these systems
will likely need to deal with several unpredictable situations including variations in system
performance, sudden changes in system workload and component failures. These situations can
cause deviation from the desired system behaviour and require dynamic adaptation of the system
behaviour, parameters or architecture. Through using closed-loop control, typically realized
with software, intelligent and autonomous software systems can dynamically adapt themselves,
without any or with limited human involvement, by identifying abnormal situations, analysing
alternative adaptation options, and finally, self-adapting to a suitable new configuration. The
SEfIAS GI Dagstuhl seminar brought together early-career researchers and practitioners from
the research communities of SEAMS1, ICAC2/ICCAC3, SASO4, Self-Aware Computing5 and
AAMAS6, providing a forum for strengthening interaction and collaboration between these
communities.

2012 ACM Subject Classification: D.2.10 [Software Engineering] Design, D.2.11 [Software
Engineering] Software Architectures
Keywords: software engineering, self-adaptive systems, software evolution, requirements
engineering, distributed systems

1Int. Symposium on Software Engineering for Adaptive and Self-Managing Systems:
http://self-adaptive.org/seams
2Int. Conference on Autonomic Computing: http://icac2017.ece.ohio-state.edu/
3Int. Conference on Cloud and Autonomic Computing: http://autonomic-conference.org/iccac-2017/
4Int. Conference on Self-Adaptive and Self-Organizing Systems: http://www.saso-conference.org/
5https://se.informatik.uni-wuerzburg.de/research/self_aware_computing/community/
6Int. Conference on Autonomous Agents and Multiagent Systems: http://www.aamas-conference.org/

ii

http://self-adaptive.org/seams
http://icac2017.ece.ohio-state.edu/
http://autonomic-conference.org/iccac-2017/
http://www.saso-conference.org/
https://se.informatik.uni-wuerzburg.de/research/self_aware_computing/community/
http://www.aamas-conference.org/

Contents

1 Executive Summary 1

2 Key Topics on Software Engineering for Intelligent and Autonomous Systems 3
2.1 Optimization (Erik Fredericks, Ilias Gerostathopoulos, Christian Krupitzer, Thomas

Vogel) . 3
2.2 Learning in Collective Autonomous Systems (Mirko D’Angelo, Simos Gerasimou,

Sona Ghahremani, Johannes Grohmann, Ingrid Nunes, Evangelos Pournaras,
Sven Tomforde) . 4

2.3 Control of Complexity (Aimee Borda, Ada Diaconescu, Lukas Esterle, Alessandro
V. Papadopoulos, Martin Pfannemüller, Danilo Pianini, Roberto Rodrigues Filho) 6

2.4 Specification and Composition of Non-Functional Requirements with Capabilities
for Self-Adaptive Systems (Nico Hochgeschwender and Sebastian Götz) 8

2.5 Goals (Christian Cabrera, Sylvain Frey, Fatemeh Golpayegani, Barry Porter,
Romina Spalazzese) . 10

3 Overview of Talks 12
3.1 Compositional Modelling and Verification of Self-Adaptive Systems (Aimee Borda) 12
3.2 Urban-Centric Service Discovery: A Self-Adaptable Model for Smart Cities

(Christian Cabrera) . 12
3.3 Decentralized Self-Adaptive Computing at the Edge (Mirko D’Angelo) 12
3.4 Generic Architectures for Multi-Level Goal-driven Self-Integrating Systems (Ada

Diaconescu) . 13
3.5 Autonomous Decision Making for Collaborating Agents (Lukas Esterle) 13
3.6 Software Engineering for Self-Adaptive Cyber-Physical Systems (Erik Fredericks) 13
3.7 Launch photon torpedos: a journey through organic cyberz (Sylvain Frey) . . . 14
3.8 Assurances for AI-Based Systems (Simos Gerasimou) 14
3.9 Online Experiment-Driven Adaptation (Ilias Gerostathopoulos) 14
3.10 Utility-driven self-adaptation of large dynamic architectures (Sona Ghahremani) 15
3.11 Collaboration Community Formation in Open Systems for Agents with Multiple

Goals (Fatemeh Golpayegani) . 15
3.12 Model-driven Self-optimization for Energy-efficient Software (Sebastian Götz) . . 16
3.13 Towards Self-Aware and Self-Adapting Performance Models (Johannes Grohmann) 16
3.14 Exploiting Model-driven Engineering in Robotics at Design Time and Run Time

(Nico Hochgeschwender) . 16
3.15 Making the Everyday Life smarter through Cyber-physical Systems (Christian

Krupitzer) . 17
3.16 Providing Resilience and Efficiency to the Internet of Things (Ingrid Nunes) . . 17
3.17 Control of things (Alessandro Vittorio Papadopoulos) 18

iii

3.18 Approaching a Self-Adaptive Middleware for Network Adaptations (Martin Pfan-
nemüller) . 18

3.19 Engineering the aggregate (Danilo Pianini) . 18
3.20 The New Abstraction: Engineering Search Spaces for Machine Learning (Barry

Porter) . 19
3.21 Self-adaptive Learning in Decentralized Combinatorial Optimization (Evangelos

Pournaras) . 19
3.22 From Self-adaptation to Self-composition: Transcending Autonomic Computing

Limitations (Roberto Rodrigues Filho) . 20
3.23 ECo-IoT: an Architectural Approach for Realizing Emergent Configurations in

the Internet of Things (Romina Spalazzese) . 20
3.24 Increased system autonomy through learning and self-* properties (Sven Tomforde) 21
3.25 Self-Adaptive Search for Sapienz (Thomas Vogel) 21

4 Participants 22

Author Index 23

iv

1 Executive Summary

Simos Gerasimou, Thomas Vogel, Ada Diaconescu

Software systems are increasingly used in application domains characterised by uncertain
environments, evolving requirements and unexpected failures; sudden system malfunctioning
raises serious issues of security, safety, loss of comfort or revenue. Such domains span all
areas of our lives, from smart cities and electrical grids through defense, healthcare, finance,
transportation and robotics to social networks, online commerce and distributed gaming. During
operation, these systems might need to deal with unpredictable situations including variations
in system performance, sudden changes in system workload and component failures. These
situations can cause deviation from the desired system behaviour and require dynamic adaptation
of the system behaviour, parameters or architecture [1, 2].

Since the early 2000s, as the ubiquity and complexity of software systems had increased
rapidly, there has been much interest in applying artificial intelligence and closed-loop control
to the self-management of systems besides to emulating human intelligence, for instance, in
playing chess. This trend led to research on engineering intelligent and autonomous software
systems capable of dynamically adapting themselves without any or with limited human
involvement. Through using closed-loop control, typically realized with software, these systems
can autonomously identify abnormal situations, analyse alternative adaptation options, and
finally, self-adapt to a suitable new configuration.

The opportunities for research and innovation in autonomous systems are remarkable.
Horizon 2020 European research roadmaps highlight that advances in such systems will have
a tremendous impact on society, business and global economy [3]. Autonomous systems will
enhance our daily life by contributing to safer transportation, efficient manufacturing, secure
systems and improved healthcare but they will also influence our social life; for instance, with
respect to ethical issues on autonomous decision making.

Over the past years, several research communities have devoted significant efforts to devise
methodologies, algorithms and frameworks for engineering autonomous computing systems.
Some noteworthy examples include the SEAMS, ICAC/ICCAC, SASO, Self-Aware Computing
and AAMAS communities. Irrespective of the incarnation of each community, either focusing on
resolving engineering problems in software applications (e.g., SEAMS) or systems in general (e.g.,
SASO, ICAC/ICCAC) or on investigating new learning, reasoning and prediction techniques for
such systems (e.g., Self-Aware Computing, AAMAS), the main objective remains the same, that
is, to make computing systems more intelligent and autonomous.

Despite the mutual interests, these communities typically participate in disjoint research
forums such as workshops, conferences and working groups. Hence, they rarely have the
opportunity to meet in a common venue. This GI-Dagstuhl seminar brought together early-
career researchers from these communities to discuss related research efforts, to evaluate the state
of the art in each community, and to envision the future of intelligent and autonomous systems.

1

Thus, the seminar strengthened interaction and collaboration between these communities, and
encouraged the exploration of synergies for advancing the state of the art. A common theme
across these communities is software engineering, since software typically realizes the system
component that controls the intelligent and autonomous behavior of these systems.

References

[1] R. de Lemos, H. Giese, H. Muller, M. Shaw, J. Andersson, L. Baresi, B. Becker, N. Bencomo,
Y. Brun, B. Cikic, R. Desmarais, S. Dustdar, G. Engels, K. Geihs, K. M. Goeschka, A. Gorla,
V. Grassi, P. Inverardi, G. Karsai, J. Kramer, M. Litoiu, A. Lopes, J. Magee, S. Malek, S.
Mankovskii, R. Mirandola, J. Mylopoulos, O. Nierstrasz, M. Pezze, C. Prehofer, W. Schafer, W.
Schlichting, B. Schmerl, D. B. Smith, J. P. Sousa, G. Tamura, L. Tahvildari, N. M. Villegas, T.
Vogel, D. Weyns, K. Wong, and J. Wuttke. A second Research Roadmap. Software Engineering
for Self-Adaptive Systems II, volume 7475 of LNCS, pages 1–32. Springer, 2013.

[2] S. Kounev, X. Zhu, J. O. Kephart, and M. Kwiatkowska. Model-driven Algorithms and
Architectures for Self-Aware Computing Systems (Dagstuhl Seminar 15041). Dagstuhl Reports,
5(1):164–196, 2015.

[3] European Union. Horizon 2020 Work Programme 2018-2020. Future and Emerging Tech-
nologies. 2018. Available online at http://ec.europa.eu/research/participants/data/
ref/h2020/wp/2018-2020/main/h2020-wp1820-fet_en.pdf

2

http://ec.europa.eu/research/participants/data/ref/h2020/wp/2018-2020/main/h2020-wp1820-fet_en.pdf
http://ec.europa.eu/research/participants/data/ref/h2020/wp/2018-2020/main/h2020-wp1820-fet_en.pdf

2 Key Topics on Software Engineering for Intelligent and
Autonomous Systems

2.1 Optimization

Erik Fredericks, Ilias Gerostathopoulos, Christian Krupitzer, Thomas Vogel

The objective of the discussion group “Optimization” was to analyze and discuss the current
state of the art in using multi-objective / multi-criteria optimization to improve the behavior of
self-adaptive systems, mainly (but not solely) for the planning of adaptation. To work out the
requirements of optimization in self-adaptive systems, we focused on four use cases all having
variant requirements regarding the optimization aspect:

• CrowdNav [1]: an approach to adaptive routing of vehicles, i.e., optimization of CrowdNav
using Bayesian optimization [2];

• Platooning [3], a technique for building convoys of self-driving vehicles;

• Sapienz [4] for adaptive, intelligent testing of software;

• Remote data mirroring (RDM) [5,6], i.e., optimization techniques to harden the RDM
configuration against uncertainty [7].

The discussion of the use cases identified several parameters that influence the choice of
a suitable adaptation technique such as the problem domains / characteristics, the types of
optimization strategies, and strategies for modeling systems and optimization points. Further,
the absence of recommendations on means for identifying the most suitable optimization
technique was identified.

To overcome this issue, the group decided to work on a taxonomy on optimization for
self-adaptive systems. A bottom-up approach is favored here: based on a literature research to
identify common techniques for optimization in self-adaptive systems, the idea is to analyze
and compare the performance of several optimization techniques in different settings and to
identify through that challenges, lessons learned, and an initial version of a taxonomy with
selection criteria for choosing an optimization strategy for adaptive systems. A corresponding
publication following this approach using the CrowdNav [1] app by integrating optimization
loops in rule-based adaptation has been submitted to SEAMS as a full research paper, with a
followup survey on incorporating optimization in self-adaptive systems planned by the group.
Moreover, another submission to an IEEE theme issue is also planned.

3

References

[1] Sanny Schmid, Ilias Gerostathopoulos, Christian Prehofer, Tomas Bures. Self-Adaptation
Based on Big Data Analytics: A Model Problem and Tool. In Proceedings of the 12th
International Symposium on Software Engineering for Adaptive and Self-Managing Systems
(SEAMS’17), 2017, pp. 102-108.

[2] Ilias Gerostathopoulos, Christian Prehofer, Tomas Bures. Adapting a System with Noisy
Outputs with Statistical Guarantees. In Proceedings of the 13th International Symposium on
Software Engineering for Adaptive and Self-Managing Systems (SEAMS’18), 2018, pp. 58-68.

[3] Krupitzer, C ; Breitbach, M ; Saal, J ; Becker, C ; Segata, M ; Cigno, R Lo: RoCoSys: A
framework for coordination of mobile IoT devices. In Proceedings of the 2017 IEEE International
Conference on Pervasive Computing and Communications Workshops (PerCom Workshops),
2017, pp. 485–490.

[4] Ke Mao, Mark Harman, Yue Jia. Sapienz: Multi-objective Automated Testing for Android
Applications. In Proceedings of the 25th International Symposium on Software Testing and
Analysis, 2018, pp. 94-105.

[5] M. Ji, A. Veitch, and J. Wilkes. Seneca: Remote mirroring done write. In USENIX
2003 Annual Technical Conference, pages 253-268, Berkeley, CA, USA, June 2003. USENIX
Association

[6] K. Keeton, C. Santos, D. Beyer, J. Chase, and J. Wilkes. Designing for disasters. In
Proceedings of the 3rd USENIX Conference on File and Storage Technologies, pages 59-62,
Berkeley, CA, USA, 2004. USENIX Association.

[7] Fredericks, Erik M. “Automatically hardening a self-adaptive system against uncertainty”.
Proceedings of the 11th International Symposium on Software Engineering for Adaptive and
Self-Managing Systems. ACM, 2016.

2.2 Learning in Collective Autonomous Systems

Mirko D’Angelo, Simos Gerasimou, Sona Ghahremani, Johannes Grohmann, Ingrid Nunes,
Evangelos Pournaras, Sven Tomforde

Self-adaptive systems (SAS) [1] refer to systems that can change their behaviour at runtime
to keep meeting their design goals. They can be structured as a single software system, with
a feedback loop that allows it to adapt itself, or be composed of multiple self-adaptive parts.
In the latter case, these parts are called agents [2], which can interact leading to an emergent
behaviour of the system as a whole. We refer to SAS composed of multiple agents as collective
SAS.

4

SAS and, consequently, agents are often situated in dynamic environments. Therefore, it is
typically infeasible to predict at design time all possible scenarios that can occur at runtime to
provide these systems with pre-specified adaptations. Learning can be used to allow such systems
and agents to observe the environment and outcomes of their actions in order to improve the
performance of an individual agent or the system as a whole [3]. However, in many SAS learning
has been explored in an application-specific way, because both researchers and practitioners
have little guidance regarding best practices to solve recurrent problems in this context.

The ultimate goal of the “Learning in Collective SAS” group is to provide guidelines on how
learning can be used in the context of (collective) SAS. In order to achieve this, first, there is a
need to understand the commonalities among different SAS, so that the group is able to identify
guidelines that are useful across different systems. Based on this goal, three research questions
are derived, listed as follows.

• RQ1: What are the characteristics of collective SAS that impact on how agents learn?

• RQ2: What, when and how can individual agents (part of a collective SAS) learn?

• RQ3: What learning techniques are suitable for each learning task?

During the seminar, the group focused on answering RQ1 and managed to take steps
towards the remaining questions. Inspired by the framework proposed by Luck et al. [4], three
characteristics, or dimensions, associated with SAS were identified as relevant to properly
design a learning solution, leading to a framework to characterise SAS.

The first dimension is selfishness, which indicates whether an individual system (or agent)
has the goal to maximise its own utility, i.e. it is selfish, or to maximise the utility of the system
as a whole (or society), i.e. it is altruistic. The second dimension is autonomy, which reflects
the amount of agents, part of the system, that are autonomous. Agents are autonomous when
there is no external control over its behaviour. The third and last dimension is observability
(this term is still being revised), which indicates what can be observed from the other agents
that are part of the society. When there is minimal observability, agents can observe only the
external behaviour of its neighbours, while when there is maximal observability, agents can also
observe and obtain information regarding the internal behaviour of its neighbours.

These three dimensions lead to a continuous 3-D space in which collective SAS can be
located. They are orthogonal and each combination of the different values associated with these
dimensions leads to different design choices regarding what, when and how agents should learn.

Based on these three dimensions and its possible minimal and maximal values, the group
focused on analysing the impact of SAS with particular characteristics on the learning process.
For example, in a system composed of selfish and autonomous agents and that has minimal
observability, the adopted learning algorithms should be those that converge fast because
agents want to maximise their own utility and no information is shared. In this example,
six characteristics associated with this kind of system were identified with the corresponding
implications over the learning process.

Driven by the preliminary results achieved during the break out sessions, our group performed
a multifaceted analysis of collective SAS with learning abilities to answer research questions RQ1

5

– RQ3. Based on this analysis, we introduce a 3D framework that illustrates the learning aspects
of collective SAS considering the dimensions of autonomy, knowledge access, and behaviour,
and facilitates the selection of learning techniques and models. The outcome of this work has
been accepted for publication at the 14th IEEE/ACM International Symposium on Software
Engineering for Adaptive and Self-Managing Systems (SEAMS’19) [5].

References

[1] Mazeiar Salehie and Ladan Tahvildari, Self-adaptive Software: Landscape and Research
Challenges, ACM Trans. Auton. Adapt. Syst. May 2009, pp. 14:1–14:42.

[2] Nicholas R Jennings, An Agent-based Approach for Building Complex Software Systems,
Commun. ACM, April 2001, pp. 35–41

[3] Arthur Rodrigues, Ricardo D. Caldas, Genaína Nunes Rodrigues, Thomas Vogel and Patrizio
Pelliccione. A Learning Approach to Enhance Assurances for Real-time Self-adaptive Systems,
In Proceedings of the 13th International Conference on Software Engineering for Adaptive and
Self-Managing Systems (SEAMS’18), 2018, pp. 206–216.

[4] Michael Luck, Munroe Steve, Ashri Ronald and Fabiola López y López. Trust and norms for
interaction. In 2004 IEEE International Conference on Systems, Man and Cybernetics, vol. 2,
pp. 1944-1949. IEEE, 2004.

[5] Mirco D’ Angelo, Simos Gerasimou, Sona Ghahremani, Johannes Grohmann, Ingrid Nunes,
Evangelos Pournaras, Sven Tomforde. On Learning in Collective Self-adaptive Systems: State
of Practice and a 3D Framework. In 14th IEEE/ACM International Symposium on Software
Engineering for Adaptive and Self-Managing Systems (SEAMS’19), in print.

2.3 Control of Complexity

Aimee Borda, Ada Diaconescu, Lukas Esterle, Alessandro V. Papadopoulos, Martin Pfan-
nemüller, Danilo Pianini, Roberto Rodrigues Filho

The breakout-group “Control of Complexity” discussed some of the main challenges that an
autonomous system might face when deployed in real-world environments, and some of the key
control logic requirements to help overcome such challenges. We considered a wide range of
different application areas for autonomous systems, including collaborative robotics in cyber-
physical systems and factory networks, autonomous vehicles and transportation networks, web
and cloud servers, smart homes, smart offices, smart neighbourhoods and power grids.

While there is a wide range of challenges that autonomous systems might face in these
application scenarios, we identified the following three challenges as fundamentally important,
and focused our discussions around them:

6

• Dynamic environment: the system has to operate under constantly changing conditions.
This includes external aspects as well as internal resources and potential collaborators.

• Open systems: the systems will change over time, as new components are added while
others become obsolete, or fail.

• Changing goals: the system’s goals may change over time, either because they are
redefined by stakeholders, or because they need to be readjusted to unforeseen situations.

To address the above challenges, the control logic of autonomous systems must meet the
following specific requirements. First, the control logic needs to be adaptable. The controller
has to be able to adapt itself to changing conditions (i.e. external, internal and goal-related) to
ensure the system operates as expected (i.e. meeting its latest stakeholder goals). Second, the
controller needs to be scalable. This control logic requirement encompasses three aspects: (i)
support for significant increases in the numbers of components and systems to be controlled,
during runtime; (ii) ability to control systems and components with heterogeneous capabilities,
resources, and behaviours; and (iii) ability to develop more complex solutions by combining
simpler control logic elements, while managing potential conflicts. Third, the controller of
an open system, operating in dynamic environments with changing goals, needs to be able
to trade-off the ability to adapt and self-improve against the guarantees it can provide. In
safety-critical situations, controllers should guarantee satisfactory system behaviour, even if
its behaviour is sub-optimal. However, in non-critical situations, the controller should be able
to explore new control strategies, aiming to optimise system performance, even if this might
temporarily breach performance guarantees.

To help meet these requirements we propose that software engineering methods and artefacts
should ensure the following set of generic control logic capabilities:

• Controller Composability: different control modules, encapsulating specific internal
structure and behaviour, can be integrated at runtime – e.g., cooperate to achieve overall
system control and meet system goals. This requires that each controller provides an
external representation describing its properties, goals, models, behavioural states, and
interfaces. Such formal representation can be parsed and processed by other controllers and
potentially by humans. Controller components need to be able to query and discover other
controller components, as well as to test and validate their descriptions. The system should
support controller composition either offline or online; and either by human operators or
via autonomous facilities. Hence, system goals specification and transformation are highly
relevant to our work – this insight led to fruitful exchanges with another break-out group
discussing systems able to autonomously manage own goals.

• Control Architecture: Multi-scale (hierarchical) controller organisations manage differ-
ent system scales. For instance, lower level controllers can perform urgent actions to react
to environmental changes, while higher levels can perform more intricate planning, consider
global system optimisation, and coordinate lower levels accordingly. To ensure system
coherence, higher controllers should operate at lower frequencies than lower controllers.
Such architecture facilitates frequent changes in a system’s controller composition, as it
limits the impact of local changes on the overall system.

7

• Adaptability of controllers: Control components can be hot-swapped, e.g., based on
predefined, dynamically discovered control components. Furthermore, controller parame-
ters and description models can be learned during runtime. This allows a controller to
change its internal strategies and tune its achievable goals during runtime; and to better
integrate with other controllers. An important objective for adaptive controllers is to
maintain guarantees requested by stakeholders (at design-time or during runtime). Prede-
fined and pre-tested component hot-swapping offers more guarantees but less adaptability
to unforeseen conditions; while an intelligent, more “creative” controller may better deal
with uncertain environments but ensure fewer guarantees.

Future research directions should provide software engineering artefacts to support the above
controller requirements and capabilities – e.g. reusable component models, architectures, frame-
works, and design patterns; development methodologies; verification and validation techniques.
We additionally identified two specific research questions. First, can we offer a system design
which guarantees that suitable local behaviour (e.g. achieving local goals, being optimal, meeting
guarantees) will eventually lead to suitable system-wide behaviour (e.g. achieving global goals,
being optimal overall, meeting system guarantees)? This would require either that controllers
can be composed linearly so as to offer predictable composed control functions; or, that runtime
side-effects emerging from dynamic controller integration can be detected and resolved during
runtime, in a predictable way. Second, we wonder whether or not stateless control components
would integrate more efficiently. This would require the system to deal with states progressively,
throughout the hierarchical levels. Furthermore, this requires controllers to share and distribute
knowledge among themselves, across hierarchical levels.

Finally, we identified relevant concepts and approaches from related research fields – including
systems theory, control theory, self-* systems, and complex systems – which may prove valuable
for tackling the identified challenges of autonomous and intelligent control of large-scale highly-
adaptable systems. In future research we will further investigate these complementary techniques
and mechanisms.

2.4 Specification and Composition of Non-Functional Requirements with
Capabilities for Self-Adaptive Systems

Nico Hochgeschwender and Sebastian Götz

A plethora of approaches to develop and operate self-adaptive software systems has been intro-
duced within the last two decades. In [1], Salehi and Tahvildari differentiate such systems into
self-configuring, self-protecting, self-healing and self-optimizing systems. Here, self-configuring
systems denote the most basic form of self-adaptiveness, by stating that the systems are able to
adjust their own configuration. The three other classes further specify the purpose for which
the system reconfigures itself: to heal, to protect or to optimize itself, usually w.r.t. specified
non-functional requirements (NFR) such as performance or energy consumption. Interestingly,

8

current approaches for self-optimizing systems use languages with limited expressiveness to
specify NFRs.

Typically, they are specified with fixed reference values. For example, a specific maximum
latency or a concrete minimum bandwidth is specified. However, for the operation of real
world systems like autonomous robots, drones or cars, such hard constraints are often not
required and potentially narrow the solution space unnecessarily. In addition, those systems
are expected to remain operational even in the presence of situations and conditions where
minimum and maximum constraints are violated by, for example, varying task, platform or
environment requirements. Therefore, the minimum or maximum constraints could be relaxed
- a feature usually not supported by the language used to specify NFRs. By relaxing NFRs,
the set of valid configurations increases, which could be leveraged by the constraint solver to
find a valid solution more efficiently. In the literature, some notable approaches to express
NFRs in a more relaxed way are available, for example, the work of Whittle et al. [2] proposes
the RELAX language which provides a vocabulary to enable developers to state NFRs in an
uncertain manner by explicitly handling uncertainty of requirements with temporal, ordinal
and modal operators. However, the main objective of RELAX and related approaches is to
specify what should be achieved in terms of requirements whereas means to describe the how,
for example, system abilities which are contributing to achieve NFRs, is typically not available
in those approaches.

In our breakout group we investigated whether a unified modeling approach of both non-
functional requirements and system abilities could enhance the development of autonomous
systems capable of carrying out their tasks even in the presence of disturbances and failures.
To this end, we propose to employ the Conceptual Space formalism introduced by Gärdenfors
[3] and rooted in the cognitive science domain, to model both NFRs and system abilities. The
general idea of this formalism is to bridge the gap between symbolic and sub-symbolic knowledge
by introducing an intermediate, geometric representation layer, namely the Conceptual Space.
In essence, a Conceptual Space is a high-dimensional space composed by a number of dimensions.
Each dimension refers to a measurable unit (e.g., bandwidth, latency or throughput) and the
convex regions formed in that space correspond to high-level concepts (e.g., requirements or
system abilities). The geometric nature of the Conceptual Space formalism enables not only to
construct arbitrary variations of concepts, but also to perform different operations supported by
the underlying algebra [4]. First, the geometric nature allows to apply distance measures (e.g.,
euclidean distance) to compare different instances (points in the Conceptual Space) with each
other. This feature is helpful in selecting system configurations which closely match specific
NFRs [5] by assessing their distance value obtained from a distance measure. Second, recent
developments of the algebra pave the way to apply operations to compute whether a certain
NFR concept is provided by a system ability and to which degree. Further, the algebra provides
means to combine different concepts with each other - a feature which could be exploited in
scenarios where self-adaptive systems are required to compose their abilities in order to achieve
common goals under specific NFRs.

9

References

[1] Mazeiar Salehie and Ladan Tahvildari, Self-adaptive Software: Landscape and Research
Challenges, ACM Trans. Auton. Adapt. Syst. May 2009, pp. 14:1–14:42.

[2] Jon Whittle, Pete Sawyer, Nelly Bencomo, Betty Cheng and Jean-Michel Bruel. “RELAX:
Incorporating Uncertainty into the Specification of Self-Adaptive Systems”. In Proceedings of
the 17th IEEE International Requirements Engineering Conference. 2009. pp. 79-88

[3] Peter Gärdenfors. “Conceptual spaces: The geometry of thought”. The MIT Press. 2004.

[4] Lucas Bechberger and Kai-Uwe Kühnberger. “A Thorough Formalization of Conceptual
Spaces”. In Proceedings of the Joint German/Austrian Conference on Artificial Intelligence.
2017. pp. 58-71

[5] Sebastian Blumenthal, Nico Hochgeschwender, Erwin Prassler, Holger Voos and Herman
Bruyninckx. “An Approach for a Distributed World Model with QoS-based Algorithm Adap-
tation”. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS). 2015. pp. 1806-1811

2.5 Goals

Christian Cabrera, Sylvain Frey, Fatemeh Golpayegani, Barry Porter, Romina Spalazzese

During the breakout sessions in SEfIAS Dagstuhl Seminar, we discussed the importance of goal
definition, goal translation and the connectivity of the goals of different roles defined within
the system such as users, providers, designers etc. In this report, we are summarising the
importance of this topic and also discussing a number of examples to exemplify this issue in
real-world applications.

When designing self-adaptive systems in different context such as IoT, multi-agent systems,
or control systems, a crucial question that one should ask prior to design the system is “what is
the goal?” The definition of the system goal and the way how it is formalised plays an important
role during the life cycle of a self-adaptive system, from feasibility study to maintenance and
the way how it will adapt and evolve. This is particularly important when we design systems
that require to interact with humans, where should understand the need of a human, be able to
translate these needs to an understandable machine language and also be able to respond to new
or evolving needs when it has the required capabilities. This whole process requires the machine
to understand the goals/needs at an abstract level, decompose it to a lower level set of sub-goals
to make it possible for the computing entities (e.g., agents) to realize it. It should also have the
ability to understand new goals and adapt its decomposing process to realize new/evolved goals.

The following challenges were identified during the discussions:

• Translation of humans’ goal (end-users) to machine understandable goals

10

End-user goals are commonly expressed in natural or high-level languages that machines
cannot understand. Current methods of translation from human goals to machine under-
standable goals implies high human intervention and cause loss of information that systems
cannot use in their internal processes. This information is usually valuable and would allow
systems to have better results and performance. Novel approaches to translate human
goals to machine understandable languages are needed. As a first step to understand this
problem we plan to:

– Identify different levels of abstraction from a goal defined by a human, to a realizable
goal by a machine in different domains

– Identify/define the links between these levels, how the information is transformed
from one level to another and which information is lost in these transformations

– Define methods to keep the lost information in the transformation and express it in
an useful format for the system

• Goal adaptation at runtime with emergent capabilities
Systems have pre-defined goals and capabilities according to what is available in the
environment before execution. New capabilities can emerge or current ones disappear in
dynamic environments. Systems must adapt their goals and execution plans according to
the continuously changing set of available capabilities.

11

3 Overview of Talks

3.1 Compositional Modelling and Verification of Self-Adaptive Systems

Aimee Borda (Trinity College Dublin, IR)

We are looking into a systematic and feasible approach for designing and verifying Self-Adaptive
systems. We investigate different compositional techniques and models that can be verified
using existing technologies.

3.2 Urban-Centric Service Discovery: A Self-Adaptable Model for Smart
Cities

Christian Cabrera (Trinity College Dublin, IR)

A smart city is an environment that is continuously changing where citizens cannot be constantly
aware of all relevant services around them. The ICT systems that support a city should evolve
with it to offer the right services to the right citizen, in the right place, at the right time. Some
existing research proposes static and reactive solutions where service organisation and discovery
is defined by network properties, the service domain, service usage, or the city context to offer
efficient service discovery. However, they do not evolve according to the city dynamics. This
lack of flexibility produces outdated distribution of services information that negatively impacts
discovery efficiency as the city changes. Self-adaptable service discovery solutions have been
also proposed but they do not scale well in large scenarios such as a smart city. We propose
a self-adaptable service model for smart cities to support efficient and pervasive discovery
based on urban-context and citizens’ behaviour. This model reorganises services information
according to city events, and offers both reactive and proactive service discovery depending on
the environment status.

3.3 Decentralized Self-Adaptive Computing at the Edge

Mirko D’Angelo (Linnaeus University, SE)

Nowadays, computing infrastructures are usually deployed in fully controlled environments and
managed in a centralized fashion. Leveraging on centralized infrastructures could prevent the

12

system to deal with scalability and performance issues, which are inherent to modern large-scale
data-intensive applications. We envision fully decentralized computing infrastructures deployed
at the edge of the network providing the required support for operating data-intensive systems
(DiS). However, engineering such systems raises many challenges, as decentralization introduces
uncertainty, which in turn may harm the dependability of the system. The research directions
and current contributions towards this vision address the following questions: (i) when is
decentralized computing required in DiS, (ii) how to enable decentralized computing in DiS?,
(iii) how to design/analyze decentralized DiS?.

3.4 Generic Architectures for Multi-Level Goal-driven Self-Integrating
Systems

Ada Diaconescu (Télécom ParisTech, FR)

Self-integration enables socio-technical systems to adapt to a wide range of internal and external
changes, so as to achieve their goals (which may also change). Multi-level, or hierarchical
designs, help system scalability (with respect to the number of components, their heterogeneity
and frequency of change. The aim of my research is to provide reusable conceptual frameworks,
architectures, design patterns and methodologies to help designers understand and develop
large-scale highly-adaptive (socio-)technical systems, relying on self-integration and hierarchical
designs.

3.5 Autonomous Decision Making for Collaborating Agents

Lukas Esterle (Aston University, UK)

When autonomous agents interact, they have to make decision on an ongoing basis. These
decisions can be based on information sensed from the environment or received from other
agents. When they collaborate with each other towards common goals, these decisions need to
be sensible in order to not affect these goals too much. My research interest is on one hand
on the amount of information required to allow agents to arrive at reasonable decisions. This
becomes more pressing when the environment can change and/or agents can move about in
the world. On the other hand, I am interested in enabling agents to reflect on their decisions
especially with respect on the impact on their own performance and on the performance of
others.

3.6 Software Engineering for Self-Adaptive Cyber-Physical Systems

Erik Fredericks (Oakland University, USA)

13

Cyber-physical systems have become ubiquitous, especially in such domains that are safety-
critical in nature. My research focuses on the implications of combining cyber-physical systems,
self-adaptive systems, and search-based software engineering. Specifically, I am interested
in how uncertainty can impact such systems and how software engineering techniques can
be used to enhance assurance at all stages of the software life cycle for those systems that
are safety-critical. I will discuss recent work in search heuristics for non-functional software
requirements, a self-adaptive medical smart home, and run-time software validation.

3.7 Launch photon torpedos: a journey through organic cyberz

Sylvain Frey (DeepMind, UK)

My research deals with complex, dynamic cyber-physical systems with critical safety and
security requirements such as the Internet, smart grids, Industrial Control Systems, and critical
infrastructures in general. My expertise spans various domains: cyber security, software
engineering, multi-agent systems,

3.8 Assurances for AI-Based Systems

Simos Gerasimou (University of York, UK)

Autonomous systems can sense, reason, and interact with the real world. Recent advances
in Artificial Intelligence and related technologies have raised our expectations for engineering
fully-autonomous systems including driverless cars and interactive companions. While the
expected societal, economic and safety benefits are significant, some very recent unfortunate
incidents (e.g., Uber, Tesla) indicate that we are not there yet. In this talk, we will explore
the opportunities coming with autonomous systems, investigate the challenges for engineering
trustworthy autonomous systems and analyse what all this means to our everyday lives.

3.9 Online Experiment-Driven Adaptation

Ilias Gerostathopoulos (Technical University Munich, DE)

As modern systems become larger, more complex and customizable, it is difficult to fully model
their internal workings in advance in order to control and optimize them at runtime. Thus, we
propose here optimization based on operational data and experimentation. In this talk, I will
present the main ideas behind Online Experiment-Driven Adaptation (OEDA), an approach
whereby systems are adapted and configurations are evaluated by controlled experiments in

14

production environments using advanced data analysis and statistical methods. In particular, I
will describe the main concepts of OEDA, along with an example of a complex, hard-to-model
system that is amenable to online optimization via controlled experiments—the CrowdNav
self-adaptation model problem. I will also describe three different types of costs in online
experimentation and discuss the tradeoffs in terms of the different costs of using three different
optimization algorithms: Bayesian optimization, factorial design, and local search.

3.10 Utility-driven self-adaptation of large dynamic architectures

Sona Ghahremani (Hasso Plattner Institute, DE)

Self-adaptation can be realized in many ways. In my research I propose a rule-based and
utility-driven approach that achieves the beneficial properties of each of these directions such
that the adaptation decisions are optimal while the computation remains scalable. The approach
can be used for the architecture-based self-healing and self-optimization of large software systems.
We define the utility for large dynamic architectures of such systems based on patterns capturing
the issues self-adaptation must address. Therefore, self-adaptation can be steered by predicting
changes of the system utility. However, construction of an analytic representation of the system
utility is challenging due to lack of detailed information about the system performance model.
We mitigate this problem with a methodology to learn the changes of the system utility without
relying on detailed information of the system.

3.11 Collaboration Community Formation in Open Systems for Agents
with Multiple Goals

Fatemeh Golpayegani (Trinity College Dublin, IR)

Agents frequently coordinate their behaviour and collaborate to achieve a shared goal, share
constrained resources, or accomplish a complex task that they cannot do alone. Forming an
effective collaboration community in which agents are willing to cooperate, and have no conflict
of interests, is the key to any successful collaborative process. Forming such communities has
been addressed well in cooperative and closed multi-agent systems. However, it is particularly
challenging in open multi-agent systems where agents are self-interested. Such agents are also
likely to continuously and unpredictably leave and join the system and have multiple goals to
pursue simultaneously. Existing research has addressed this challenge in open systems with
utility-based or complementary-based approaches. Utility-based approaches focus on maximising
self-interested agents’ individual pay-off when sharing constrained resources. In complementary-
based approaches, agents’ individual skills are composed to accomplish a complex task or achieve
a shared goal. However, in such systems agents need to identify the possible dependencies
and conflicts between their individual goals, and build/adapt collaboration communities to

15

pursue multiple goals simultaneously. Such dependencies affect agents’ levels of self-interest
and consequently their willingness to form collaboration communities. Given the circumstances,
agents need a decentralised mechanism to acquire an understanding of other agents operating
in their system, identify their goal dependencies, and adapt their level of self-interest to form
effective collaboration communities. My research focus is on proposing and developing a fully
decentralised approach to Collaboration Community FOrmation Model for agents with multiple
goals in open systems (CCFOM). CCFOM presents a new social reasoning model and a new
distributed community formation algorithm. CCFOM enables agents to pursue their individual
and shared goals simultaneously in resource constrained open systems by forming new or
adapting existing collaboration communities.

3.12 Model-driven Self-optimization for Energy-efficient Software

Sebastian Götz (University of Technology Dresden, DE)

In my talk I will give an overview of my recent work on model-driven software development
at runtime, with a particular focus on self-optimization aiming at energy-efficiency and its
application in robotics.

3.13 Towards Self-Aware and Self-Adapting Performance Models

Johannes Grohmann (University of Würzburg, D)

Performance models are possible components of self-aware computing systems, as they allow
such systems to reason about their own state and behavior. Our research is targeted towards
such performance models. We propose an approach to meta-self-awareness, making the processes
of model creation, maintenance and solution themselves self-aware. This enables the automated
selection and adaption of software performance engineering approaches specifically tailored to
the system under study.

3.14 Exploiting Model-driven Engineering in Robotics at Design Time and
Run Time

Nico Hochgeschwender (Université du Luxembourg, LU)

Engineering advanced autonomous systems such as robotic applications is a knowledge-intensive
process that reflects, involves and builds upon decisions from complex, heterogenous fields of
research and engineering – reaching from hardware design, domains such as control, perception or

16

planning to software engineering. Although the latest advancements in those fields contributed
significantly to the development of sophisticated applications, robots’ task spectrum and
autonomy often remains limited to carefully engineered applications. One of the reasons is that
in robotics software engineering in particular, the integration of those fields is all too often solved
in an ad-hoc manner, where knowledge and assumptions about the robot’s software remains
implicit. Model-driven engineering aims to remedy this situation by introducing modeling
languages to capture this knowledge explicitly and formally in the form of various domain
models. However, these models are merely seen as a way to support humans during the robot’s
software design process. In this talk I will argue and demonstrate that robots themselves
should be first-class consumers of this knowledge. Having this knowledge enables robots to
autonomously adapt their software to the various and changing run-time requirements induced,
for example, by the robot’s task or environment.

3.15 Making the Everyday Life smarter through Cyber-physical Systems

Christian Krupitzer (University of Mannheim, DE)

Cyber-physical systems seamlessly intertwine physical everyday objects with virtual software
to provide intelligent, adaptive, and connected services to users. These systems enable new
types of applications. This presentation gives an overview on several research projects in
the cyber-physical systems domain. The iCOD project presents an approach for platooning
coordination, i.e. coordination of self-driving vehicles to convoys on highways. In the adaptive
authentication, we envision a password-free world through a distributed, adaptive system for
authentication. The third project investigates the application of a layered meta-model for
engineering adaptive systems, predictive maintenance, and adaptive communication protocols
in the domain of Industry 4.0. Last, in cooperation with the soccer club TSG Hoffenheim, we
research the use of data mining and virtual reality in sports.

3.16 Providing Resilience and Efficiency to the Internet of Things

Ingrid Nunes (Universidade Federal do Rio Grande do Sul, BR)

Since the popularisation of the Internet, software systems have evolved from simple standalone
applications running in isolated computers to distributed systems that largely interact with
each other running in various types of devices. The network that emerges from all these
communicating devices is referred to as Internet of Things (IoT). Because of the distribution of
software components and the dependency among them, which are not necessarily part of the
same organisation, ensuring system resilience and efficiency becomes a challenge. In this talk, I’ll
introduce work that my research group has been developing towards the use of the autonomous
components to provide these quality attributes to such systems. Resilience is achieved by means
of a set of techniques that allow system components, implemented as intelligent agents, to react

17

with remediation actions to situations that may compromise the functioning of the system
to later seek and autonomously resolve causes of problems that occur at runtime. Efficiency,
in turn, is improved by an adaptive application-level framework, able to autonomously and
manage cache data at a method-level. Recent publications on these two topics can be seen at
http://inf.ufrgs.br/~ingridnunes.

3.17 Control of things

Alessandro Vittorio Papadopoulos (MDH, Västerås, SE)

Nowadays, we live in a society with billions of devices that are interconnected, and interact
together to improve the quality of our lives. The management and processing of information and
knowledge have by now become our main resources, and the fundamental factors of economic and
social development. This has been possible by the recent advances in computing systems, ranging
from embedded devices to cloud computing systems, but it poses a number of challenges in the
management of the emerging complexity. In order to tame such a complexity, mathematically
grounded approaches are needed, in order to design next generation computing systems. This
talk discusses how control theory can be used for designing efficient solutions for controlling
the behavior of computing systems, and presents successful applications, together with current
challenges and opportunities in the field.

3.18 Approaching a Self-Adaptive Middleware for Network Adaptations

Martin Pfannemüller (University of Mannheim, DEil)

Self-adaptive capabilities reduce maintenance effort and help to reconfigure systems at runtime
according to changes in their context. With the increasing number of computation devices
induced by trends such as smart home and Industry 4.0, managing and adapting the network gets
gradually more important. The goal of this work is to approach a self-adaptive middleware for
network adaptations which is able to change the network behavior at runtime. The middleware
should provide an abstraction for specifying network adaptations on a higher level with support
for different knowledge sources as well as diverse target systems such as software-defined
networking.

3.19 Engineering the aggregate

Danilo Pianini (University of Bologna, IT)

18

http://inf.ufrgs.br/~ingridnunes

A distributed system can be seen as a single computational machine rather than a collection of
multiple communicating machines, as it is usually perceived. Reasoning on the aggregate of
situated devices under this privileged point of view can lead to interesting engineering solutions
that allow for abstracting away the networking protocols, and focusing on producing advanced,
self-stabilizing coordination algorithms.

3.20 The New Abstraction: Engineering Search Spaces for Machine Learn-
ing

Barry Porter (Lancaster University, UK)

Humans have long struggled with the increasing complexity and scale of software. Baseline
complexity, measured in lines of code, is compounded by the challenges of highly dynamic
deployment environments, where behavioural adaptation is needed to offer good service. In this
talk we argue that raising abstraction levels in traditional software engineering approaches has
reached its limit in addressing complexity, and a new methodology is required: an abstraction of
designing search spaces for machine learning. We examine this idea through two major areas: the
component model that powers emergent software systems and how it offers a universal substrate
for runtime behavioural search; and the challenge of automated program logic synthesis to
populate a component library without the human programmer. In both areas, the engineering
problem is fundamentally shifted from designing abstraction layers to instead designing a search
space for machine learning; we explore the properties of this process and how we might generalise
it into common practice throughout autonomous systems engineering.

3.21 Self-adaptive Learning in Decentralized Combinatorial Optimization

Evangelos Pournaras (ETH Zurich, CH)

The democratization of Internet of Things and ubiquitous computing equips citizens with
phenomenal new ways for online participation and decision-making in application domains
of smart grids and smart cities. When agents autonomously self-determine the options from
which they make choices, while these choices collectively have an overall system-wide impact, an
optimal decision-making turns into a combinatorial optimization problem known to be NP-hard.
This paper contributes a new generic self-adaptive learning algorithm for a fully decentralized
combinatorial optimization: I-EPOS, the Iterative Economic Planning and Optimized Selections.
In contrast to related algorithms that simply parallelize computations or big data and deep
learning systems that often require personal data and overtake of control with implication
on privacy-preservation and autonomy, I-EPOS relies on coordinated local decision-making
via structured interactions over tree topologies that involve the exchange of entirely local and
aggregated information. Strikingly, the cost-effectiveness of I-EPOS in regards to performance

19

vs. computational and communication cost highly outperforms other related algorithms that
involve non-local brute-force operations or exchange of full information. The algorithm is also
evaluated using real-world data from two state-of-the-art pilot projects of participatory sharing
economies: (i) energy management and (ii) bicycle sharing. The contribution of an I-EPOS open
source software suite implemented as a paradigmatic artifact for community aspires to settle
a knowledge exchange for the design of new algorithms and application scenarios of sharing
economies towards highly participatory and sustainable digital societies.

3.22 From Self-adaptation to Self-composition: Transcending Autonomic
Computing Limitations

Roberto Rodrigues Filho (Lancaster University, UK)

Contemporary systems are increasingly complex. The reason vary from their size, heterogeneous
infrastructures and highly volatile operating environments. As a response to this complexity, the
area of Autonomic Computing (AC) has gained significant importance. However, the focus of AC
research has long been on engineered self-adaptation, in which human engineers determine how
and where to adapt a system’s structure and/or parameters to accommodate changes. We argue
for a shift of focus from engineered adaptation to autonomous composition as a way to transcend
limitations of current approaches, and to build real-world autonomous everyday software. In this
talk, we discuss how to autonomously compose a web platform, and the decisions involved in the
composition process. To realise local systems this involves autonomous decisions of which small
components should be composed, and how, at each moment to deliver the desired system; to
realise distributed systems this involves autonomous decisions on which local components should
be relocated and/or replicated amongst machines. We end the talk inviting the community to
join us to further explore this paradigm shift, and to push the concepts of AC to effectively
realise multi-purpose, everyday software systems.

3.23 ECo-IoT: an Architectural Approach for Realizing Emergent Config-
urations in the Internet of Things

Romina Spalazzese (Malmö University, SE)

The rapid proliferation of the Internet of Things (IoT) is changing the way we live our everyday
life and the society in general. New devices get connected to the Internet every day and, similarly,
new IoT services and applications exploiting them are developed across a wide range of domains.
The IoT environment typically is very dynamic, devices might suddenly become unavailable
and new ones might appear. Similarly, users enter and/or leave the IoT environment while
being interested in fulfilling their individual needs. These key aspects must be considered while
designing and realizing IoT systems. In this talk I will discuss ECo-IoT, an architectural approach

20

to enable the automated formation and adaptation of Emergent Configurations (ECs) in the
IoT. An EC is formed by a set of things, with their services, functionalities, and applications, to
realize a user goal. ECs are adapted in response to (un)foreseen context changes e.g., changes
in available things or due to changing or evolving user goals. In the talk, I will discuss: (i) an
architecture and a process for realizing ECs; and (ii) a prototype we implemented for (iii) the
validation of ECo-IoT through an IoT scenario.

3.24 Increased system autonomy through learning and self-* properties

Sven Tomforde (University of Kassel, DE)

The goal of my research activities is to increase the autonomy of technical systems by learning
and self-* properties. The basic theme is to master large-scale interconnected systems through
mechanisms such as self-adaptation and self-organisation - which requires autonomous learning
capabilities. In order to achieve this goal, four research areas are distinguished: “autonomous
machine learning”, “data-driven system modelling”, “distributed control algorithms” and “com-
putational trust and security mechanisms”, resulting in different methods, tools and applications
for distributedly interacting, intelligent and autonomous systems. As application areas, I focus
on traffic control, industry automation, smart energy grid, and data communication networks.

3.25 Self-Adaptive Search for Sapienz

Thomas Vogel (HU Berlin, DE)

In this talk, I will outline how feedback and self-adaptation can improve search heuristics in
search-based software engineering. The focus will be on using results of fitness landscape analysis
to dynamically adapt the search when generating test suites for Android apps with Sapienz, a
search-based testing tool for apps.

21

4 Participants

= Aimee Borda
Trinity College Dublin, IR

= Fatemeh Golpayegani
Trinity College Dublin, IR

= Martin Pfannemüller
University of Mannheim, DE

= Christian Cabrera
Trinity College Dublin, IR

= Sona Ghahremani
Hasso Plattner Institute, DE

= Danilo Pianini
University of Bologna, IT

= Mirko D’Angelo
Linnaeus University, SE

= Sebastian Götz
University of Technology Dresden, DE

= Barry Porter
Lancaster University, UK

= Ada Diaconescu
Télécom ParisTech, FR

= Johannes Grohmann
University of Würzburg, DE

= Evangelos Pournaras
ETH Zurich, CH

= Lukas Esterle
Aston University, UK

= Nico Hochgeschwender
Université du Luxembourg, LU

= Roberto Rodrigues Filho
Lancaster University, UK

= Erik Fredericks
Oakland University, USA

= Christian Krupitzer
University of Mannheim, DE

= Romina Spalazzese
Malmö University, SE

= Sylvain Frey
DeepMind, UK

= Ingrid Nunes
Univ. Federal do Rio Grande do Sul, BR

= Sven Tomforde
University of Kassel, DE

= Simos Gerasimou
University of York, UK

= Alessandro V. Papadopoulos
MDH, Västerås, SE

= Thomas Vogel
HU Berlin, DE

= Ilias Gerostathopoulos
Technical University Munich, DE

22

Author Index

Borda
Aimee, 6, 12

Cabrera
Christian, 10, 12

D’Angelo
Mirko, 4, 12

Diaconescu
Ada, 1, 6, 13

Esterle
Lukas, 6, 13

Filho
Roberto Rodrigues, 6, 20

Fredericks
Erik, 3, 14

Frey
Sylvain, 10, 14

Götz
Sebastian, 8, 16

Gerasimou
Simos, 1, 4, 14

Gerostathopoulos
Ilias, 3, 14

Ghahremani
Sona, 4, 15

Golpayegani
Fatemeh, 10, 15

Grohmann
Johannes, 4, 16

Hochgeschwender
Nico, 8, 16

Krupitzer
Christian, 3, 17

Nunes
Ingrid, 4, 17

Papadopoulos
Alessandro V., 6, 18

Pfannemüller
Martin, 6, 18

Pianini
Danilo, 6, 18

Porter
Barry, 10, 19

Pournaras
Evangelos, 4, 19

Spalazzese
Romina, 10, 20

Tomforde
Sven, 4, 21

Vogel
Thomas, 1, 3, 21

23

	1 Executive Summary
	2 Key Topics on Software Engineering for Intelligent and Autonomous Systems
	2.1 Optimization (Erik Fredericks, Ilias Gerostathopoulos, Christian Krupitzer, Thomas Vogel)
	2.2 Learning in Collective Autonomous Systems (Mirko D'Angelo, Simos Gerasimou, Sona Ghahremani, Johannes Grohmann, Ingrid Nunes, Evangelos Pournaras, Sven Tomforde)
	2.3 Control of Complexity (Aimee Borda, Ada Diaconescu, Lukas Esterle, Alessandro V. Papadopoulos, Martin Pfannemüller, Danilo Pianini, Roberto Rodrigues Filho)
	2.4 Specification and Composition of Non-Functional Requirements with Capabilities for Self-Adaptive Systems (Nico Hochgeschwender and Sebastian Götz)
	2.5 Goals (Christian Cabrera, Sylvain Frey, Fatemeh Golpayegani, Barry Porter, Romina Spalazzese)

	3 Overview of Talks
	3.1 Compositional Modelling and Verification of Self-Adaptive Systems (Aimee Borda)
	3.2 Urban-Centric Service Discovery: A Self-Adaptable Model for Smart Cities (Christian Cabrera)
	3.3 Decentralized Self-Adaptive Computing at the Edge (Mirko D'Angelo)
	3.4 Generic Architectures for Multi-Level Goal-driven Self-Integrating Systems (Ada Diaconescu)
	3.5 Autonomous Decision Making for Collaborating Agents (Lukas Esterle)
	3.6 Software Engineering for Self-Adaptive Cyber-Physical Systems (Erik Fredericks)
	3.7 Launch photon torpedos: a journey through organic cyberz (Sylvain Frey)
	3.8 Assurances for AI-Based Systems (Simos Gerasimou)
	3.9 Online Experiment-Driven Adaptation (Ilias Gerostathopoulos)
	3.10 Utility-driven self-adaptation of large dynamic architectures (Sona Ghahremani)
	3.11 Collaboration Community Formation in Open Systems for Agents with Multiple Goals (Fatemeh Golpayegani)
	3.12 Model-driven Self-optimization for Energy-efficient Software (Sebastian Götz)
	3.13 Towards Self-Aware and Self-Adapting Performance Models (Johannes Grohmann)
	3.14 Exploiting Model-driven Engineering in Robotics at Design Time and Run Time (Nico Hochgeschwender)
	3.15 Making the Everyday Life smarter through Cyber-physical Systems (Christian Krupitzer)
	3.16 Providing Resilience and Efficiency to the Internet of Things (Ingrid Nunes)
	3.17 Control of things (Alessandro Vittorio Papadopoulos)
	3.18 Approaching a Self-Adaptive Middleware for Network Adaptations (Martin Pfannemüller)
	3.19 Engineering the aggregate (Danilo Pianini)
	3.20 The New Abstraction: Engineering Search Spaces for Machine Learning (Barry Porter)
	3.21 Self-adaptive Learning in Decentralized Combinatorial Optimization (Evangelos Pournaras)
	3.22 From Self-adaptation to Self-composition: Transcending Autonomic Computing Limitations (Roberto Rodrigues Filho)
	3.23 ECo-IoT: an Architectural Approach for Realizing Emergent Configurations in the Internet of Things (Romina Spalazzese)
	3.24 Increased system autonomy through learning and self-* properties (Sven Tomforde)
	3.25 Self-Adaptive Search for Sapienz (Thomas Vogel)

	4 Participants
	Author Index

