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The 13th International Workshop on Genetic Improvement
(GI 2024) was co-located with the 46th International Con-
ference on Software Engineering (ICSE 2024) and ran in
hybrid mode, physically being located with ICSE in Lisbon
and being available worldwide using Zoom. Genetic improve-
ment is the process of using automated search to improve
existing software [1], [2]. It has successfully been used to
fix bugs [3], transplant functionality from one system to
another [4], improve predictions [5], and reduce software’s
runtime [6], [7], energy [8] and memory [9] consumption.
GI research has already won five “Humies” [3], [10]–[13],
prestigious cash prizes awarded for demonstrating human-
competitive results at difficult-to-automate tasks. However,
there remain many opportunities to improve the state-of-the-
art. By bringing together GI researchers and GI enthusiasts,
the workshop facilitates discussions and so we hope moves
the field forward by sharing knowledge and exchanging ideas.

I. WORKSHOP FORMAT AND PARTICIPATION

The 13th International Workshop on Genetic Improve-
ment consisted of a one-day workshop and was held
on Tuesday 16th April 2024, the day before the main
ICSE conference. The final workshop program and the
recordings of the talks will be available online at http://
geneticimprovementofsoftware.com/events/icse2024 and in the
ICSE 2024 workshop proceedings [14]. The workshop fea-
tured a program that included a keynote, a GI tutorial, three
research paper talks, three position paper talks and a discussion
session.
Keynote.
Prof. Shin Yoo gave the invited keynote presentation. His
enlightening talk “Executing One’s Way out of the Chinese
Room” [15] considered Artificial Intelligence (AI) Large Lan-
guage Models (LLMs), which is growing more popular faster
in software engineering than in other areas of computer science
according to his analysis of arXiv data. He suspects that
this popularity is due to the fact that LLMs can seemingly
understand the semantics of both natural and programming
languages, allowing LLMs to generate program source code
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Fig. 1. The “Chinese Room” contains a person who does not speak
Chinese. But they have rules to create Chinese output from Chinese input.
Externally the whole room appears to understand Chinese. Similarly individual
components of AI models do not understand Java but a whole AI LLM can
generate Java source code or Java test cases.

given natural language requirements. However, Yoo questioned
whether LLMs really understands the semantics of the code,
using John Searle’s “Chinese Room” thought experiment.

Searle invented his “Chinese Room” as a philosophical
argument about strong artificial intelligence (AI) [16]. Suppose
someone who does not speak Chinese is in a room (Figure 1)
with the source code of an AI program that can generate
Chinese text in response to Chinese input. When someone
outside posts queries written in Chinese into the room, the
person inside follows the algorithm and prints the generated
Chinese text and passes it to the person outside the room. If
the AI program is indeed well written and quickly applied,
the room appears to someone outside the room to understand
Chinese. Yoo made the analogy with today’s LLMs. They can
take text input and generate text, such as Java source files
and Java test cases [17], without essentially understanding the
semantics of the generated code. The lack of understanding
stems from the fact that the generated code is what is most
likely (according to the distribution in the training corpus)
rather than what is correct.

So what can be done? He claimed that program source code
is a unique type of text for LLMs to work with, because
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Fig. 2. Prof. Shin Yoo [15]

code is executable. That is, LLM generated source code
output can be automatically compiled, run and tested. If it
fails the tests, the faulty LLM output can be automatically
rejected. The GI community, as well as the automated software
testing community, has a lot of experience in automatically
verifying program behaviour using dynamic executions, which
is a natural fit to verification of LLM generated source code.
Indeed, Yoo showed an example of an LLM agent instructed
to reason about buggy code, generating testable scientific hy-
pothesis about the bug and, subsequently generating debugger
commands and test inputs to see if the hypothesis is true
or not. If the hypothesis is false, this can lead to using the
LLM to generate its next (testable) hypothesis; once the bug
is located, the LLM agent can be used to generate a fix for
the bug [18]–[22].

The keynote slides are available via http://gpbib.cs.ucl.ac.
uk/gi2024/gi 2024 slides/yoo gi2024 keynote.pdf

Tutorial.
Dr. Aymeric Blot (Figure 3) gave an extensive review of
his Magpie GI system [23], [24], tracing its development
from PyGGI 2.0 [25]. Magpie builds upon the capabilities
of PyGGI, showcasing compatibility with any programming
language and proficiency in enhancing both functional and
non-functional aspects of software. However, Magpie also in-
troduces novel features such as an improved user interface, the
addition of parameter configuration to complement program
source code manipulation, and the support of a much wider
range of local search, genetic programming [26], and valida-
tion algorithms. Magpie is free and open source, accessible
at https://github.com/bloa/magpie, and provides both a hack-
friendly and a user-friendly interface to the world of automated
software improvement. During the tutorial, participants gained
insights into the framework’s structure, philosophy, and key
components, whilst also engaging with practical examples.
Dr. Blot finished by describing future development plans. The
tutorial slides are available via http://www.cs.ucl.ac.uk/staff/a.
blot/files/blot gi@icse 2024 slides.pdf

Fig. 3. Dr. Aymeric Blot [24]

Fig. 4. Benjamin J. Craine [28]

Paper presentations. This year, the GI workshop received
seven paper submissions in total: three research paper sub-
missions and four position paper submissions. Each received
three independent reviews from the workshop’s programme
committee (Section V). One position paper was rejected and
six papers were presented at the workshop. The authors of the
accepted research papers had 20 minutes for the presentation
and 10 for questions. The authors of the accepted position
papers had 10 minutes for the presentation and 5 minutes for
questions (e.g. Figures 4 and 5).

Participation The workshop attracted a total of 45 registra-
tions, some of whom participated online via zoom (Figure 6
shows some of the in person and some of the zoom partici-
pants).

Fig. 5. Zoom presentations [27] [29]
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Fig. 6. Some of GI @ ICSE 2024 workshop participants. Top (via zoom): Dominik Sobania, Vesna Nowack, Oliver Krauss, Justyna Petke, Erik M.
Fredericks, Alfonso Ortega de la Puente, David Clark, Achiya Elyasaf, Luigi Rovito. In Lisbon: Fathony Achmad, Louis Milliken, Dan Blackwell, Shin Yoo,
Sungmin Kang, Max Hort, Benjamin J. Craine, Kevin Leach, W. B. Langdon, Aymeric Blot, Zsolt Nemeth, Juyeon Yoon, Somin Kim, Banseok Woo, Gabin
An, Doam Lee, Hyeonseok Lee, Ilaria Pia La Torre

Fig. 7. Bill Langdon and Aymeric Blot. Best paper “Deep Mutations have
Little Impact” [30].

Awards. Traditionally at the GI workshop, the best paper
awards are given to the researchers for their outstanding
contributions to the GI field. This year, we granted three
awards, where the best presentation award was decided by
a vote from the participants of the workshop, while the other
two were given based on reviews:
Best research paper award: “Deep Mutations have Little Im-
pact” by William B. Langdon and David Clark [30] (Figure 7).
Best position paper award: “Ecosystem Curation in Ge-
netic Improvement for Emergent Software Systems” by Zsolt
Nemeth, Penn Faulkner Rainford and Barry Porter [31] (Fig-
ure 8).
Best presentation award: was won by Kevin Leach for
“Genetic Improvement for DNN Security” [32] (Figure 9).

II. DISCUSSION/FUTURE TOPICS

A. Extension of Recent Work

A few of the authors present lobbied for people to extend
their ideas. For example, Langdon [30] said he intended to
investigate how much impact mutations have depending upon

Fig. 8. Zsolt Nemeth and Aymeric Blot. Best position paper “Ecosystem
Curation in Genetic Improvement for Emergent Software Systems” [31].

Fig. 9. Kevin Leach and Aymeric Blot. Best presentation award for “Genetic
Improvement for DNN Security” [32].

their depth in more C++ programs but said more examples,
ideally in other languages, were needed and hoped others
would consider reporting nesting depth when studying their
own mutations [33]. Blackwell [34] suggested fuzz testing
tools might help and some existing source code analysis
tools, such as parsers might be an interesting source of deeply
nested code benchmarks or targets for GI (see, for example,



https://github.com/google/fuzzbench/tree/master/benchmarks).
Also Blot reminded the audience that Magpie [24] is an open
source project and he would welcome both collaborators
wishing to extend Magpie and users of it. He also offered
ready technical assistance to new users of Magpie.

B. Understandable Automatic Changes

There was an animated discussion about the need or otherwise
for explainable GI (cf. Explainable AI) [35]–[39]. Initial
work by Wes Weimer’s group [40] suggested more than ten
years ago that undergraduate students had a prejudice against
automatically generated patches. However automatic program
repair has moved on and it is now in routine use by profes-
sional software engineers in a few major software companies.
For example, some automatically generated fixes within Meta
are added into their continuous integration (CI) development
system and so subject to review like other source code changes
[41]–[46]. It is therefore essential they be comprehensible
to human developers charged with maintaining the software.
However, it was agreed that many of the published human
studies on the acceptability of machine generated source code
changes, had been carried out before the launch of ChatGPT in
the fall of 2022, and so the now widespread knowledge of large
language models (LLMs) might have changed software engi-
neers’ views on the use of artificially generated patches. Some
argued that there may be scope for LLMs to generate natural
language text (NLP) to explain the patch to the code reviewers.
Should the LLM be tailored to the code reviewers? Could
this tailoring be specific to company? E.g. should the text
used in Meta be different from that generated for Bloomberg
code reviewers [47]? It was pointed out that the following day
(17 May) award winning work carried out at Bloomberg would
be presented in the ICSE Software Engineering in Practice
track [48]. Others asked about the current state-of-the-art: is
there a limit to the size of code patches that professional
software engineers are prepared to accept? Also, since the
patch is written in the developer’s language (e.g. Java), will
patch explanations help?

Although some of the answers can be found in the human
studies conducted in Bloomberg [47]–[49], we need to further
understand how software engineers want to interact with LLM-
based tools for code generation and what is needed for these
tools to be widely adopted.

As noted by Erik Fredericks after Dr. Yoo’s keynote, one
possible direction could be to combine GitHub Copilot and a
GI patching process.

Sungmin Kang pointed to existing open source communities
aimed at using LLMs in software engineering, in particular
https://github.com/OpenDevin/OpenDevin.

C. Genetic Improvement for Specification Repair

During the discussion, Vesna Nowack highlighted the possible
application of GI in requirements engineering. Maintaining
up-to-date specification is crucial for software development.
However, due to the changes in the environment or user

requirements, specification might become outdated or inaccu-
rate, leading to misunderstandings in the development process
or making it challenging to realise the intended system. Some
proposed techniques [50], [51] successfully repair specification
written in the Alloy declarative language. Similarly, being
guided by the counterexamples generated by existing tools, GI
could be applied to generate, refine and repair specification in
Alloy or another language, such as Spectra [52].

D. Doing the Impossible
The previous section has already mentioned using genetic
improvement to improve specifications and, although so far
used only in testing [53], Prof. Yoo, in his keynote (Section I,
see especially slides 38–40) proposed GI systems where an
LLM makes mutations and a second LLM scores them as part
of the GI fitness function. So allowing GI to operate on any
type of software, not just programs.

In general, the first, the mutator, need not be an LLM. Any
system which makes a reasonable percentage of “sensible”
changes might be tried. For example, if the text file has a rea-
sonable grammar, we might use Grammatical Evolution [54]
to make changes via a BNF grammar. Alternatively, there
are several more sophisticated grammars used with genetic
programming which might be tried [55, page 53].

Although interactive evolutionary computation (IEC) [56]
where one or more humans interact with the evolutionary
computing system has been successfully used, particularly
in art [57], [58] and games [59], it suffers from “user fa-
tigue”, which severely limits the number of fitness evaluations.
However, the second LLM (the scorer), since it gives an
automatic way of performing fitness evaluation, opens up
many possibilities for GI. Note, the fitness function (e.g. the
second LLM) need not be perfect. Evolutionary computing
systems, such as GI, typically tolerate a lot of fitness noise,
as long as on average the fitness function guides the search
in the right direction. Often there are multiple ways, not just
LLMs, to make stochastic changes. Potentially what they now
give us, are ways to measure, or at least rank, automatically
generated changes. Thus, we might consider applying GI to
any part of software engineering where now LLMs give us at
least a semi-automatic way of choosing on average the better
part of a population of proposed mutations. We may hope
overtime, as repeated generations of mutation and crossover
pile beneficial mutations on top of other beneficial mutations,
to solve problems previously considered impossible.

III. WORKSHOP OUTCOMES

Following the success of last year’s Genetic Improvement
special issue of the Automated Software Engineering journal,
some authors of accepted papers have been invited to submit
their extended work to a second GI ASE special issue. (Special
Issue Editors: Oliver Krauss, Vesna Nowack and Justyna Petke
https://geneticimprovementofsoftware.com/events/ase2024.)

As with earlier workshops [60]–[63], there will be a short
write up in the ACM SIGSOFT SEN newsletter (this docu-
ment).

We hope to hold the GI workshop again next year.
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IV. GI 2024 WORKSHOP ORGANISERS

Gabin An Aymeric Blot Vesna Nowack

Oliver Krauss Justyna Petke

V. GI 2024 PROGRAMME COMMITTEE

Each submission received three independent reviews from the
workshop’s programme committee (see Figure 11).

In addition to providing feedback to the authors and de-
ciding which submissions to accept, the best paper awards
(Figures 7 and 8) were decided by the organisers using
the reviewers’ comments. Whilst the best presentation was
chosen by the audience on the day in Lisbon and on Zoom.us
(Figure 9).
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Fig. 10. Pasteis de Belem’s pastel de nata were a great success.
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