
The 13th International Workshop on
Genetic Improvement (GI @ ICSE 2024)

William B. Langdon
UCL, London, UK

w.langdon@cs.ucl.ac.uk

Gabin An
KAIST, Korea

agb94@kaist.ac.kr

Aymeric Blot
Universite de Rennes

aymeric.blot@univ-rennes.fr

Vesna Nowack
Imperial College, UK

vnowack@imperial.ac.uk

Justyna Petke
UCL, London, UK
j.petke@ucl.ac.uk

Shin Yoo
KAIST, Korea

shin.yoo@cs.kaist.ac.kr

Oliver Krauss
FH Upper Austria

oliver.krauss@fh-hagenberg.at

Erik M. Fredericks
GVSU, Michigan, USA

frederer@gvsu.edu

Daniel Blackwell
UCL, London, UK

daniel.blackwell.14@ucl.ac.uk

The 13th International Workshop on Genetic Improvement
(GI 2024) was co-located with the 46th International Con-
ference on Software Engineering (ICSE 2024) and ran in
hybrid mode, physically being located with ICSE in Lisbon
and being available worldwide using Zoom. Genetic improve-
ment is the process of using automated search to improve
existing software [1], [2]. It has successfully been used to
fix bugs [3], transplant functionality from one system to
another [4], improve predictions [5], and reduce software’s
runtime [6], [7], energy [8] and memory [9] consumption.
GI research has already won five “Humies” [3], [10]–[13],
prestigious cash prizes awarded for demonstrating human-
competitive results at difficult-to-automate tasks. However,
there remain many opportunities to improve the state-of-the-
art. By bringing together GI researchers and GI enthusiasts,
the workshop facilitates discussions and so we hope moves
the field forward by sharing knowledge and exchanging ideas.

I. WORKSHOP FORMAT AND PARTICIPATION

The 13th International Workshop on Genetic Improve-
ment consisted of a one-day workshop and was held
on Tuesday 16th April 2024, the day before the main
ICSE conference. The final workshop program and the
recordings of the talks will be available online at http://
geneticimprovementofsoftware.com/events/icse2024 and in the
ICSE 2024 workshop proceedings [14]. The workshop fea-
tured a program that included a keynote, a GI tutorial, three
research paper talks, three position paper talks and a discussion
session.
Keynote.
Prof. Shin Yoo gave the invited keynote presentation. His
enlightening talk “Executing One’s Way out of the Chinese
Room” [15] considered Artificial Intelligence (AI) Large Lan-
guage Models (LLMs), which is growing more popular faster
in software engineering than in other areas of computer science
according to his analysis of arXiv data. He suspects that
this popularity is due to the fact that LLMs can seemingly
understand the semantics of both natural and programming
languages, allowing LLMs to generate program source code

IN
OUT

Fig. 1. The “Chinese Room” contains a person who does not speak
Chinese. But they have rules to create Chinese output from Chinese input.
Externally the whole room appears to understand Chinese. Similarly individual
components of AI models do not understand Java but a whole AI LLM can
generate Java source code or Java test cases.

given natural language requirements. However, Yoo questioned
whether LLMs really understands the semantics of the code,
using John Searle’s “Chinese Room” thought experiment.

Searle invented his “Chinese Room” as a philosophical
argument about strong artificial intelligence (AI) [16]. Suppose
someone who does not speak Chinese is in a room (Figure 1)
with the source code of an AI program that can generate
Chinese text in response to Chinese input. When someone
outside posts queries written in Chinese into the room, the
person inside follows the algorithm and prints the generated
Chinese text and passes it to the person outside the room. If
the AI program is indeed well written and quickly applied,
the room appears to someone outside the room to understand
Chinese. Yoo made the analogy with today’s LLMs. They can
take text input and generate text, such as Java source files
and Java test cases [17], without essentially understanding the
semantics of the generated code. The lack of understanding
stems from the fact that the generated code is what is most
likely (according to the distribution in the training corpus)
rather than what is correct.

So what can be done? He claimed that program source code
is a unique type of text for LLMs to work with, because

https://human-competitive.org
http://geneticimprovementofsoftware.com/events/icse2024
http://geneticimprovementofsoftware.com/events/icse2024


Fig. 2. Prof. Shin Yoo [15]

code is executable. That is, LLM generated source code
output can be automatically compiled, run and tested. If it
fails the tests, the faulty LLM output can be automatically
rejected. The GI community, as well as the automated software
testing community, has a lot of experience in automatically
verifying program behaviour using dynamic executions, which
is a natural fit to verification of LLM generated source code.
Indeed, Yoo showed an example of an LLM agent instructed
to reason about buggy code, generating testable scientific hy-
pothesis about the bug and, subsequently generating debugger
commands and test inputs to see if the hypothesis is true
or not. If the hypothesis is false, this can lead to using the
LLM to generate its next (testable) hypothesis; once the bug
is located, the LLM agent can be used to generate a fix for
the bug [18]–[22].

The keynote slides are available via http://gpbib.cs.ucl.ac.
uk/gi2024/gi 2024 slides/yoo gi2024 keynote.pdf

Tutorial.
Dr. Aymeric Blot (Figure 3) gave an extensive review of
his Magpie GI system [23], [24], tracing its development
from PyGGI 2.0 [25]. Magpie builds upon the capabilities
of PyGGI, showcasing compatibility with any programming
language and proficiency in enhancing both functional and
non-functional aspects of software. However, Magpie also in-
troduces novel features such as an improved user interface, the
addition of parameter configuration to complement program
source code manipulation, and the support of a much wider
range of local search, genetic programming [26], and valida-
tion algorithms. Magpie is free and open source, accessible
at https://github.com/bloa/magpie, and provides both a hack-
friendly and a user-friendly interface to the world of automated
software improvement. During the tutorial, participants gained
insights into the framework’s structure, philosophy, and key
components, whilst also engaging with practical examples.
Dr. Blot finished by describing future development plans. The
tutorial slides are available via http://www.cs.ucl.ac.uk/staff/a.
blot/files/blot gi@icse 2024 slides.pdf

Fig. 3. Dr. Aymeric Blot [24]

Fig. 4. Benjamin J. Craine [28]

Paper presentations. This year, the GI workshop received
seven paper submissions in total: three research paper sub-
missions and four position paper submissions. Each received
three independent reviews from the workshop’s programme
committee (Section V). One position paper was rejected and
six papers were presented at the workshop. The authors of the
accepted research papers had 20 minutes for the presentation
and 10 for questions. The authors of the accepted position
papers had 10 minutes for the presentation and 5 minutes for
questions (e.g. Figures 4 and 5).

Participation The workshop attracted a total of 45 registra-
tions, some of whom participated online via zoom (Figure 6
shows some of the in person and some of the zoom partici-
pants).

Fig. 5. Zoom presentations [27] [29]

http://gpbib.cs.ucl.ac.uk/gi2024/gi_2024_slides/yoo_gi2024_keynote.pdf
http://gpbib.cs.ucl.ac.uk/gi2024/gi_2024_slides/yoo_gi2024_keynote.pdf
https://github.com/bloa/magpie
http://www.cs.ucl.ac.uk/staff/a.blot/files/blot_gi@icse_2024_slides.pdf
http://www.cs.ucl.ac.uk/staff/a.blot/files/blot_gi@icse_2024_slides.pdf


Fig. 6. Some of GI @ ICSE 2024 workshop participants. Top (via zoom): Dominik Sobania, Vesna Nowack, Oliver Krauss, Justyna Petke, Erik M.
Fredericks, Alfonso Ortega de la Puente, David Clark, Achiya Elyasaf, Luigi Rovito. In Lisbon: Fathony Achmad, Louis Milliken, Dan Blackwell, Shin Yoo,
Sungmin Kang, Max Hort, Benjamin J. Craine, Kevin Leach, W. B. Langdon, Aymeric Blot, Zsolt Nemeth, Juyeon Yoon, Somin Kim, Banseok Woo, Gabin
An, Doam Lee, Hyeonseok Lee, Ilaria Pia La Torre

Fig. 7. Bill Langdon and Aymeric Blot. Best paper “Deep Mutations have
Little Impact” [30].

Awards. Traditionally at the GI workshop, the best paper
awards are given to the researchers for their outstanding
contributions to the GI field. This year, we granted three
awards, where the best presentation award was decided by
a vote from the participants of the workshop, while the other
two were given based on reviews:
Best research paper award: “Deep Mutations have Little Im-
pact” by William B. Langdon and David Clark [30] (Figure 7).
Best position paper award: “Ecosystem Curation in Ge-
netic Improvement for Emergent Software Systems” by Zsolt
Nemeth, Penn Faulkner Rainford and Barry Porter [31] (Fig-
ure 8).
Best presentation award: was won by Kevin Leach for
“Genetic Improvement for DNN Security” [32] (Figure 9).

II. DISCUSSION/FUTURE TOPICS

A. Extension of Recent Work

A few of the authors present lobbied for people to extend
their ideas. For example, Langdon [30] said he intended to
investigate how much impact mutations have depending upon

Fig. 8. Zsolt Nemeth and Aymeric Blot. Best position paper “Ecosystem
Curation in Genetic Improvement for Emergent Software Systems” [31].

Fig. 9. Kevin Leach and Aymeric Blot. Best presentation award for “Genetic
Improvement for DNN Security” [32].

their depth in more C++ programs but said more examples,
ideally in other languages, were needed and hoped others
would consider reporting nesting depth when studying their
own mutations [33]. Blackwell [34] suggested fuzz testing
tools might help and some existing source code analysis
tools, such as parsers might be an interesting source of deeply
nested code benchmarks or targets for GI (see, for example,



https://github.com/google/fuzzbench/tree/master/benchmarks).
Also Blot reminded the audience that Magpie [24] is an open
source project and he would welcome both collaborators
wishing to extend Magpie and users of it. He also offered
ready technical assistance to new users of Magpie.

B. Understandable Automatic Changes

There was an animated discussion about the need or otherwise
for explainable GI (cf. Explainable AI) [35]–[39]. Initial
work by Wes Weimer’s group [40] suggested more than ten
years ago that undergraduate students had a prejudice against
automatically generated patches. However automatic program
repair has moved on and it is now in routine use by profes-
sional software engineers in a few major software companies.
For example, some automatically generated fixes within Meta
are added into their continuous integration (CI) development
system and so subject to review like other source code changes
[41]–[46]. It is therefore essential they be comprehensible
to human developers charged with maintaining the software.
However, it was agreed that many of the published human
studies on the acceptability of machine generated source code
changes, had been carried out before the launch of ChatGPT in
the fall of 2022, and so the now widespread knowledge of large
language models (LLMs) might have changed software engi-
neers’ views on the use of artificially generated patches. Some
argued that there may be scope for LLMs to generate natural
language text (NLP) to explain the patch to the code reviewers.
Should the LLM be tailored to the code reviewers? Could
this tailoring be specific to company? E.g. should the text
used in Meta be different from that generated for Bloomberg
code reviewers [47]? It was pointed out that the following day
(17 May) award winning work carried out at Bloomberg would
be presented in the ICSE Software Engineering in Practice
track [48]. Others asked about the current state-of-the-art: is
there a limit to the size of code patches that professional
software engineers are prepared to accept? Also, since the
patch is written in the developer’s language (e.g. Java), will
patch explanations help?

Although some of the answers can be found in the human
studies conducted in Bloomberg [47]–[49], we need to further
understand how software engineers want to interact with LLM-
based tools for code generation and what is needed for these
tools to be widely adopted.

As noted by Erik Fredericks after Dr. Yoo’s keynote, one
possible direction could be to combine GitHub Copilot and a
GI patching process.

Sungmin Kang pointed to existing open source communities
aimed at using LLMs in software engineering, in particular
https://github.com/OpenDevin/OpenDevin.

C. Genetic Improvement for Specification Repair

During the discussion, Vesna Nowack highlighted the possible
application of GI in requirements engineering. Maintaining
up-to-date specification is crucial for software development.
However, due to the changes in the environment or user

requirements, specification might become outdated or inaccu-
rate, leading to misunderstandings in the development process
or making it challenging to realise the intended system. Some
proposed techniques [50], [51] successfully repair specification
written in the Alloy declarative language. Similarly, being
guided by the counterexamples generated by existing tools, GI
could be applied to generate, refine and repair specification in
Alloy or another language, such as Spectra [52].

D. Doing the Impossible
The previous section has already mentioned using genetic
improvement to improve specifications and, although so far
used only in testing [53], Prof. Yoo, in his keynote (Section I,
see especially slides 38–40) proposed GI systems where an
LLM makes mutations and a second LLM scores them as part
of the GI fitness function. So allowing GI to operate on any
type of software, not just programs.

In general, the first, the mutator, need not be an LLM. Any
system which makes a reasonable percentage of “sensible”
changes might be tried. For example, if the text file has a rea-
sonable grammar, we might use Grammatical Evolution [54]
to make changes via a BNF grammar. Alternatively, there
are several more sophisticated grammars used with genetic
programming which might be tried [55, page 53].

Although interactive evolutionary computation (IEC) [56]
where one or more humans interact with the evolutionary
computing system has been successfully used, particularly
in art [57], [58] and games [59], it suffers from “user fa-
tigue”, which severely limits the number of fitness evaluations.
However, the second LLM (the scorer), since it gives an
automatic way of performing fitness evaluation, opens up
many possibilities for GI. Note, the fitness function (e.g. the
second LLM) need not be perfect. Evolutionary computing
systems, such as GI, typically tolerate a lot of fitness noise,
as long as on average the fitness function guides the search
in the right direction. Often there are multiple ways, not just
LLMs, to make stochastic changes. Potentially what they now
give us, are ways to measure, or at least rank, automatically
generated changes. Thus, we might consider applying GI to
any part of software engineering where now LLMs give us at
least a semi-automatic way of choosing on average the better
part of a population of proposed mutations. We may hope
overtime, as repeated generations of mutation and crossover
pile beneficial mutations on top of other beneficial mutations,
to solve problems previously considered impossible.

III. WORKSHOP OUTCOMES

Following the success of last year’s Genetic Improvement
special issue of the Automated Software Engineering journal,
some authors of accepted papers have been invited to submit
their extended work to a second GI ASE special issue. (Special
Issue Editors: Oliver Krauss, Vesna Nowack and Justyna Petke
https://geneticimprovementofsoftware.com/events/ase2024.)

As with earlier workshops [60]–[63], there will be a short
write up in the ACM SIGSOFT SEN newsletter (this docu-
ment).

We hope to hold the GI workshop again next year.

https://github.com/google/fuzzbench/tree/master/benchmarks
https://github.com/OpenDevin/OpenDevin
https://geneticimprovementofsoftware.com/events/ase2024


IV. GI 2024 WORKSHOP ORGANISERS

Gabin An Aymeric Blot Vesna Nowack

Oliver Krauss Justyna Petke

V. GI 2024 PROGRAMME COMMITTEE

Each submission received three independent reviews from the
workshop’s programme committee (see Figure 11).

In addition to providing feedback to the authors and de-
ciding which submissions to accept, the best paper awards
(Figures 7 and 8) were decided by the organisers using
the reviewers’ comments. Whilst the best presentation was
chosen by the audience on the day in Lisbon and on Zoom.us
(Figure 9).

Acknowledgement

We would like to thank: our ICSE 2024 student volunteer,
photographers Somin Kim and Hyeonseok Lee and Sung-
min Kang and Sisi Li.
Sponsored by A Field Guide to Genetic Programming [55].

Fig. 10. Pasteis de Belem’s pastel de nata were a great success.

REFERENCES

[1] David R. White, Andrea Arcuri, and John A. Clark. Evolutionary
improvement of programs. IEEE Transactions on Evolutionary Com-
putation, 15(4):515–538, Aug 2011. doi:10.1109/TEVC.2010.
2083669.

[2] W. B. Langdon. Genetic improvement of programs. In Radomil
Matousek, editor, 18th International Conference on Soft Computing,
MENDEL 2012, Brno, Czech Republic, 27-29 June 2012. Brno Uni-
versity of Technology. Invited keynote. URL: http://www.cs.ucl.ac.uk/
staff/W.Langdon/ftp/papers/Langdon 2012 mendel.pdf.

[3] Westley Weimer, ThanhVu Nguyen, Claire Le Goues, and Stephanie
Forrest. Automatically finding patches using genetic programming.
In Stephen Fickas, editor, International Conference on Software En-
gineering (ICSE) 2009, pages 364–374, Vancouver, May 16-24 2009.
Winner ACM SIGSOFT Distinguished Paper Award. Gold medal at
2009 HUMIES. Ten-Year Most Influential Paper [65]. doi:10.1109/
ICSE.2009.5070536.

[4] Alexandru Marginean, Earl T. Barr, Mark Harman, and Yue Jia. Au-
tomated transplantation of call graph and layout features into Kate.
In Yvan Labiche and Marcio Barros, editors, SSBSE, volume 9275 of
LNCS, pages 262–268, Bergamo, Italy, September 5-7 2015. Springer.
doi:10.1007/978-3-319-22183-0_21.

[5] William B. Langdon, Justyna Petke, and Ronny Lorenz. Evolving
better RNAfold structure prediction. In Mauro Castelli, Lukas Sekan-
ina, and Mengjie Zhang, editors, EuroGP 2018: Proceedings of the
21st European Conference on Genetic Programming, volume 10781 of
LNCS, pages 220–236, Parma, Italy, 4-6 April 2018. Springer Verlag.
doi:10.1007/978-3-319-77553-1_14.

[6] Andrea Arcuri, David Robert White, John Clark, and Xin Yao. Multi-
objective improvement of software using co-evolution and smart seeding.
In Xiaodong Li, Michael Kirley, Mengjie Zhang, David G. Green, Victor
Ciesielski, Hussein A. Abbass, Zbigniew Michalewicz, Tim Hendtlass,
Kalyanmoy Deb, Kay Chen Tan, Jürgen Branke, and Yuhui Shi, editors,
Proceedings of the 7th International Conference on Simulated Evolution
And Learning (SEAL ’08), volume 5361 of Lecture Notes in Computer
Science, pages 61–70, Melbourne, Australia, December 7-10 2008.
Springer. doi:10.1007/978-3-540-89694-4_7.

[7] William B. Langdon and Mark Harman. Optimising existing software
with genetic programming. IEEE Transactions on Evolutionary Com-
putation, 19(1):118–135, Feb 2015. doi:10.1109/TEVC.2013.
2281544.

[8] Bobby R. Bruce. The Blind Software Engineer: Improving the Non-
Functional Properties of Software by Means of Genetic Improvement.
PhD thesis, Computer Science, University College, London, UK, 12 July
2018. URL: http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/papers/bruce
bobby r thesis.pdf.

[9] Jose L. Risco-Martin, J. Manuel Colmenar, J. Ignacio Hidalgo, Juan
Lanchares, and Josefa Diaz. A methodology to automatically optimize
dynamic memory managers applying grammatical evolution. Journal
of Systems and Software, 91:109–123, 2014. doi:10.1016/j.jss.
2013.12.044.

[10] Justyna Petke, Mark Harman, William B. Langdon, and Westley Weimer.
Specialising software for different downstream applications using ge-
netic improvement and code transplantation. IEEE Transactions on
Software Engineering, 44(6):574–594, June 2018. doi:10.1109/
TSE.2017.2702606.

[11] Earl T. Barr, Mark Harman, Yue Jia, Alexandru Marginean, and Justyna
Petke. Automated software transplantation. In Tao Xie and Michal
Young, editors, International Symposium on Software Testing and Anal-
ysis, ISSTA 2015, pages 257–269, Baltimore, Maryland, USA, 14-
17 July 2015. ACM. ACM SIGSOFT Distinguished Paper Award.
doi:10.1145/2771783.2771796.

[12] Michail Basios, Lingbo Li, Fan Wu, Leslie Kanthan, and Earl T. Barr.
Darwinian data structure selection. In Gary T. Leavens, Alessandro
Garcia, and Corina S. Pasareanu, editors, Proceedings of the 2018 26th
ACM Joint Meeting on European Software Engineering Conference and
Symposium on the Foundations of Software Engineering, ESEC/FSE
2018, pages 118–128, Lake Buena Vista, FL, USA, 4-9 Nov 2018. ACM.
doi:10.1145/3236024.3236043.

[13] Joel Kuepper, Andres Erbsen, Jason Gross, Owen Conoly, Chuyue Sun,
Samuel Tian, David Wu, Adam Chlipala, Chitchanok Chuengsatiansup,
Daniel Genkin, Markus Wagner, and Yuval Yarom. CryptOpt: Ver-
ified compilation with randomized program search for cryptographic

https://coinse.github.io/members/gabin/
http://www.cs.ucl.ac.uk/staff/a.blot/
https://conf.researchr.org/profile/icse-2024/vesnanowack
https://pure.fh-ooe.at/en/persons/oliver-krauss
http://www.cs.ucl.ac.uk/staff/J.Petke/
http://www.gp-field-guide.org.uk/
https://doi.org/10.1109/TEVC.2010.2083669
https://doi.org/10.1109/TEVC.2010.2083669
http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/papers/Langdon_2012_mendel.pdf
http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/papers/Langdon_2012_mendel.pdf
https://doi.org/10.1109/ICSE.2009.5070536
https://doi.org/10.1109/ICSE.2009.5070536
https://doi.org/10.1007/978-3-319-22183-0_21
https://doi.org/10.1007/978-3-319-77553-1_14
https://doi.org/10.1007/978-3-540-89694-4_7
https://doi.org/10.1109/TEVC.2013.2281544
https://doi.org/10.1109/TEVC.2013.2281544
http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/papers/bruce_bobby_r_thesis.pdf
http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/papers/bruce_bobby_r_thesis.pdf
https://doi.org/10.1016/j.jss.2013.12.044
https://doi.org/10.1016/j.jss.2013.12.044
https://doi.org/10.1109/TSE.2017.2702606
https://doi.org/10.1109/TSE.2017.2702606
https://doi.org/10.1145/2771783.2771796
https://doi.org/10.1145/3236024.3236043


Brad Alexander Nadia Alshahwan Sandy Brownlee Erik Fredericks Carol Hanna
Optimatics, Australia Meta, UK University of Stirling GVSU, USA UCL, UK

Max Hort Gunel Jahangirova Yue Jia Yusaku Kaneta Sungmin Kang
Simula Research KCL, UK Meta, UK Rakuten Inc, Japan KAIST, Korea

Maria Kechagia Penny Faulkner Rainford Eric Schulte Dominik Sobania Jeongju Sohn
UCL, UK University of York, UK Google, USA Johannes Gutenberg Luxembourg Uni

Christopher Timperley Michele Tufano Markus Wagner Jifeng Xuan
CMU Microsoft, USA Monash, Australia Wuhan Uni., China

Fig. 11. GI @ ICSE 2024 Reviewers

primitives. In Nate Foster, editor, 44th ACM SIGPLAN Conference on
Programming Language Design and Implementation, PLDI 2023, page
article no. 158, Orlando, Florida, 17-21 June 2023. Association for Com-
puting Machinery. Gold winner 2023 HUMIES, PLDI Distinguished
Paper. doi:10.1145/3591272.

[14] Gabin An, Aymeric Blot, Vesna Nowack, Oliver Krauss, and Justyna
Petke, editors. 13th International Workshop on Genetic Improvement
@ICSE 2024, Lisbon, 16 April 2023. ACM. URL: http://gpbib.cs.ucl.
ac.uk/gi2024/an 2024 GI.pdf.

[15] Shin Yoo. Executing one’s way out of the chinese room. In Gabin
An, Aymeric Blot, Vesna Nowack, Oliver Krauss, and Justyna Petke,
editors, 13th International Workshop on Genetic Improvement @ICSE
2024, page iv, Lisbon, 16 April 2024. ACM. Invited Keynote. URL:
http://gpbib.cs.ucl.ac.uk/gi2024/an 2024 GI.pdf.

[16] John R. Searle. Minds, brains, and programs. Behavioral
and Brain Sciences, 3(3):417––424, 1980. doi:10.1017/
S0140525X00005756.

[17] Aidan Dakhama, Karine Even-Mendoza, W. B. Langdon, Hector Menen-
dez Benito, and Justyna Petke. SearchGEM5: Towards reliable gem5
with search based software testing and large language models. In
Paolo Arcaini, Tao Yue, and Erik Fredericks, editors, SSBSE 2023:
Challenge Track, volume 14415 of LNCS, pages 60–166, San Francisco,

USA, 8 December 2023. Springer. Winner best Challenge Track paper.
doi:10.1007/978-3-031-48796-5_14.

[18] William B. Langdon, Shin Yoo, and Mark Harman. Inferring automatic
test oracles. In Juan P. Galeotti and Justyna Petke, editors, Search-Based
Software Testing, pages 5–6, Buenos Aires, Argentina, 22-23 May 2017.
doi:10.1109/SBST.2017.1.

[19] Sungmin Kang, Juyeon Yoon, and Shin Yoo. Large language models
are few-shot testers: Exploring LLM-based general bug reproduction.
In 45th IEEE/ACM International Conference on Software Engineering,
ICSE 2023, Melbourne, Australia, May 14-20, 2023, pages 2312–2323.
IEEE, 2023. doi:10.1109/ICSE48619.2023.00194.

[20] Sungmin Kang, Gabin An, and Shin Yoo. A quantitative and qualitative
evaluation of LLM-based explainable fault localization. In Proceedings
of the 32nd International Conference on the Foundations of Software
Engineering, Porto de Galinhas, Brazil, 15-19 July 2024. To appear.
URL: https://coinse.github.io/publications/pdfs/Kang2024ay.pdf.

[21] Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc V. Le, Ed H.
Chi, Sharan Narang, Aakanksha Chowdhery, and Denny Zhou. Self-
consistency improves chain of thought reasoning in language models.
In The Eleventh International Conference on Learning Representations,
ICLR 2023, Kigali, Rwanda, May 1-5, 2023. OpenReview.net, 2023.
URL: https://openreview.net/pdf?id=1PL1NIMMrw.

https://researchers.adelaide.edu.au/profile/bradley.alexander
https://scholar.google.com/citations?user=TG8-wssAAAAJ
http://www.cs.stir.ac.uk/~sbr/
https://efredericks.github.io/
https://solar.cs.ucl.ac.uk/members.html#carol
https://maxhort.github.io/
https://sites.google.com/view/guneljahangirova/home
https://www.facebook.com/yueplus
https://sites.google.com/site/yusakukaneta/
https://smkang96.github.io/
https://mkechagia.github.io/
https://faulknerrainford.co.uk/
https://eschulte.github.io/
https://en.wi.bwl.uni-mainz.de/dominik-sobania/
https://conf.researchr.org/profile/icse-2023/jeongjusohn1
https://www.cs.cmu.edu/directory/ctimperl
https://tufanomichele.com/
http://acrocon.com/~wagner/
http://jifeng-xuan.com/
https://doi.org/10.1145/3591272
http://gpbib.cs.ucl.ac.uk/gi2024/an_2024_GI.pdf
http://gpbib.cs.ucl.ac.uk/gi2024/an_2024_GI.pdf
http://gpbib.cs.ucl.ac.uk/gi2024/an_2024_GI.pdf
https://doi.org/10.1017/S0140525X00005756
https://doi.org/10.1017/S0140525X00005756
https://doi.org/10.1007/978-3-031-48796-5_14
https://doi.org/10.1109/SBST.2017.1
https://doi.org/10.1109/ICSE48619.2023.00194
https://coinse.github.io/publications/pdfs/Kang2024ay.pdf
https://openreview.net/pdf?id=1PL1NIMMrw


[22] Robert Feldt. Genetic programming as an explorative tool in early soft-
ware development phases. In Conor Ryan and Jim Buckley, editors, Pro-
ceedings of the 1st International Workshop on Soft Computing Applied
to Software Engineering, pages 11–20, University of Limerick, Ireland,
12-14 April 1999. Limerick University Press. URL: http://www.cs.ucl.
ac.uk/staff/W.Langdon/ftp/papers/scase 1999/feldt 1999 GPxtxsdp.pdf.

[23] Aymeric Blot and Justyna Petke. MAGPIE: Machine automated general
performance improvement via evolution of software. arXiv, 4 August
2022. doi:10.48550/arxiv.2208.02811.

[24] Aymeric Blot. Automated software performance improvement with
Magpie. In Gabin An, Aymeric Blot, Vesna Nowack, Oliver Krauss,
and Justyna Petke, editors, 13th International Workshop on Genetic
Improvement @ICSE 2024, page v, Lisbon, 16 April 2024. ACM. Invited
tutorial. URL: http://gpbib.cs.ucl.ac.uk/gi2024/an 2024 GI.pdf.

[25] Gabin An, Aymeric Blot, Justyna Petke, and Shin Yoo. PyGGI 2.0:
Language independent genetic improvement framework. In Sven Apel
and Alessandra Russo, editors, Proceedings of the 27th Joint Meeting
on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering ESEC/FSE 2019), pages 1100–
1104, Tallinn, Estonia, August 26–30 2019. ACM. doi:10.1145/
3338906.3341184.

[26] John R. Koza. Genetic Programming: On the Programming of Comput-
ers by Means of Natural Selection. MIT Press, Cambridge, MA, USA,
1992. URL: http://mitpress.mit.edu/books/genetic-programming.

[27] Ricardo Sarmiento, Marina de la Cruz, Alfonso Ortega, Roberto Baena-
Galle, Terrence Girard, Dana Casetti-Dinescu, and Alejandro Cervantes.
Grammar evolution and symbolic regression for astrometric centering
of Hubble space telescope images. In Gabin An, Aymeric Blot, Vesna
Nowack, Oliver Krauss, and Justyna Petke, editors, 13th International
Workshop on Genetic Improvement @ICSE 2024, Lisbon, 16 April
2024. ACM. URL: http://gpbib.cs.ucl.ac.uk/gi2024/ICSE 24 GIGE
astronomy cr vldtd.pdf.

[28] Benjamin J. Craine, Penn Faulkner Rainford, and Barry Porter. Human
guidance approaches for the genetic improvement of software. In Gabin
An, Aymeric Blot, Vesna Nowack, Oliver Krauss, and Justyna Petke,
editors, 13th International Workshop on Genetic Improvement @ICSE
2024, Lisbon, 16 April 2024. ACM. URL: http://gpbib.cs.ucl.ac.uk/
gi2024/Craine 2024 GI.pdf.

[29] James Callan, William B. Langdon, and Justyna Petke. On reducing
network usage with genetic improvement. In Gabin An, Aymeric
Blot, Vesna Nowack, Oliver Krauss, and Justyna Petke, editors, 13th
International Workshop on Genetic Improvement @ICSE 2024, Lisbon,
16 April 2024. ACM. URL: http://www.cs.ucl.ac.uk/staff/W.Langdon/
ftp/papers/callan 2024 GI.pdf.

[30] William B. Langdon and David Clark. Deep mutations have little impact.
In Gabin An, Aymeric Blot, Vesna Nowack, Oliver Krauss, and Justyna
Petke, editors, 13th International Workshop on Genetic Improvement
@ICSE 2024, Lisbon, 16 April 2024. ACM. Best paper. URL: http:
//gpbib.cs.ucl.ac.uk/gi2024/langdon 2024 GI.pdf.

[31] Zsolt Nemeth, Penn Faulkner Rainford, and Barry Porter. Ecosystem
curation in genetic improvement for emergent software systems. In
Gabin An, Aymeric Blot, Vesna Nowack, Oliver Krauss, and Justyna
Petke, editors, 13th International Workshop on Genetic Improvement
@ICSE 2024, Lisbon, 16 April 2024. ACM. Best position paper. URL:
http://gpbib.cs.ucl.ac.uk/gi2024/GI ICSE2024 Nemeth.pdf.

[32] Hunter Baxter, Yu Huang, and Kevin Leach. Genetic improvement
for DNN security. In Gabin An, Aymeric Blot, Vesna Nowack, Oliver
Krauss, and Justyna Petke, editors, 13th International Workshop on Ge-
netic Improvement @ICSE 2024, Lisbon, 16 April 2024. ACM. Best Pre-
sentation. URL: http://gpbib.cs.ucl.ac.uk/gi2024/Genetic Improvement
for DNN Security.pdf.

[33] Justyna Petke, David Clark, and William B. Langdon. Software
robustness: A survey, a theory, and some prospects. In Paris Avgeriou
and Dongmei Zhang, editors, ESEC/FSE 2021, Ideas, Visions and
Reflections, pages 1475–1478, Athens, Greece, 23-28 August 2021.
ACM. doi:10.1145/3468264.3473133.

[34] Daniel Blackwell and David Clark. Prescientfuzz: A more effective
exploration approach for grey-box fuzzing. arXiv 2404.18887, 29 April
2024. URL: https://arxiv.org/abs/2404.18887.

[35] William B. Langdon and Gabriela Ochoa. Genetic improvement: A
key challenge for evolutionary computation. In Yun Li, editor, Key
Challenges and Future Directions of Evolutionary Computation, pages
3068–3075, Vancouver, 25-29 July 2016. IEEE. doi:10.1109/CEC.
2016.7744177.

[36] Sarah L. Thomson, Jason Adair, Alexander E. I. Brownlee, and Daan
van den Berg. From fitness landscapes to explainable AI and back. In
Giovanni Iacca, David Walker, Alexander Brownlee, Stefano Cagnoni,
John McCall, and Jaume Bacardit, editors, Evolutionary Computation
and Explainable AI, GECCO ’23, pages 1663–1667, Lisbon, Portugal,
15-19 July 2023. Association for Computing Machinery. doi:10.
1145/3583133.3596395.

[37] Dominik Sobania, Alina Geiger, James Callan, Alexander E. I. Brown-
lee, Carol Hanna, Rebecca Moussa, Mar Zamorano Lopez, Justyna
Petke, and Federica Sarro. Evaluating explanations for software patches
generated by large language models. In Paolo Arcaini, Tao Yue, and
Erik Fredericks, editors, SSBSE 2023: Challenge Track, volume 14415
of LNCS, pages 147–152, San Francisco, USA, 8 Dec 2023. Springer.
doi:10.1007/978-3-031-48796-5_12.

[38] Yuan Yuan and Wolfgang Banzhaf. Iterative genetic improvement: Scal-
ing stochastic program synthesis. Artificial Intelligence, 322:103962,
Sept 2023. doi:10.1016/J.ARTINT.2023.103962.

[39] Giovanni Pinna, Damiano Ravalico, Luigi Rovito, Luca Manzoni, and
Andrea De Lorenzo. Enhancing large language models-based code
generation by leveraging genetic improvement. In Mario Giacobini,
Bing Xue, and Luca Manzoni, editors, EuroGP 2024: Proceedings
of the 27th European Conference on Genetic Programming, volume
14631 of LNCS, pages 108–124, Aberystwyth, 3-5 April 2024. Springer.
doi:10.1007/978-3-031-56957-9_7.

[40] Zachary P. Fry, Bryan Landau, and Westley Weimer. A human study
of patch maintainability. In Zhendong Su, editor, Proceedings of the
2012 International Symposium on Software Testing and Analysis, ISSTA
2012, pages 177–187, Minneapolis, MN, USA, 15-20 July 2012. ACM.
doi:10.1145/2338965.2336775.

[41] Nadia Alshahwan. Industrial experience of genetic improvement in
Facebook. In Justyna Petke, Shin Hwei Tan, William B. Langdon,
and Westley Weimer, editors, GI-2019, ICSE workshops proceedings,
page 1, Montreal, 28 May 2019. IEEE. Invited Keynote. doi:
10.1109/GI.2019.00010.

[42] Alexandru Marginean, Johannes Bader, Satish Chandra, Mark Harman,
Yue Jia, Ke Mao, Alexander Mols, and Andrew Scott. SapFix: Au-
tomated end-to-end repair at scale. In Joanne M. Atlee and Tevfik
Bultan, editors, 41st International Conference on Software Engineering,
pages 269–278, Montreal, 25-31 May 2019. ACM. doi:10.1109/
ICSE-SEIP.2019.00039.

[43] John Ahlgren, Maria Eugenia Berezin, Kinga Bojarczuk, Elena Dulskyte,
Inna Dvortsova, Johann George, Natalija Gucevska, Mark Harman, Ralf
Laemmel, Erik Meijer, Silvia Sapora, and Justin Spahr-Summers. WES:
Agent-based user interaction simulation on real infrastructure. In Shin
Yoo, Justyna Petke, Westley Weimer, and Bobby R. Bruce, editors, GI
@ ICSE 2020, pages 276–284, internet, 3 July 2020. ACM. Invited
Keynote. doi:10.1145/3387940.3392089.

[44] Mark Harman. Scaling genetic improvement and automated program
repair. In Maria Kechagia, Shin Hwei Tan, Sergey Mechtaev, and Lin
Tan, editors, International Workshop on Automated Program Repair
(APR’22), Internet, 19 May 2022. ACM. Invited keynote. doi:
10.1145/3524459.3527353.

[45] Nadia Alshahwan, Mark Harman, and Alexandru Marginean. Software
testing research challenges: An industrial perspective. In Sreedevi Sam-
path, editor, 16th IEEE International Conference on Software Testing,
Verification and Validation (ICST 2023), pages 1–10, Dublin, Ireland,
16-20 April 2023. Keynote. doi:10.1109/ICST57152.2023.
00008.

[46] Nadia Alshahwan, Mark Harman, Inna Harper, Alexandru Marginean,
Shubho Sengupta, and Eddy Wang. Assured LLM-based software engi-
neering, 15 April 2024. InteNSE 2024 Keynote. arXiv:2402.04380.

[47] Serkan Kirbas, Etienne Windels, Olayori McBello, Kevin Kells, Matthew
Pagano, Rafal Szalanski, Vesna Nowack, Emily Winter, Steve Counsell,
David Bowes, Tracy Hall, Saemundur Haraldsson, and John Woodward.
On the introduction of automatic program repair in Bloomberg. IEEE
Software, 38(4):43–51, July-August 2021. doi:10.1109/MS.2021.
3071086.

[48] David Williams, James Callan, Serkan Kirbas, Sergey Mechtaev, Justyna
Petke, Thomas Prideaux-Ghee, and Federica Sarro. User-centric deploy-
ment of automated program repair at Bloomberg. In ICSE Software
Engineering in Practice, Lisbon, 14-20 April 2024. Best paper. URL:
https://discovery.ucl.ac.uk/id/eprint/10187233.

[49] Emily Rowan Winter, Vesna Nowack, David Bowes, Steve Counsell,
Tracy Hall, Sæmundur Haraldsson, John Woodward, Serkan Kirbas,

http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/papers/scase_1999/feldt_1999_GPxtxsdp.pdf
http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/papers/scase_1999/feldt_1999_GPxtxsdp.pdf
https://doi.org/10.48550/arxiv.2208.02811
http://gpbib.cs.ucl.ac.uk/gi2024/an_2024_GI.pdf
https://doi.org/10.1145/3338906.3341184
https://doi.org/10.1145/3338906.3341184
http://mitpress.mit.edu/books/genetic-programming
http://gpbib.cs.ucl.ac.uk/gi2024/ICSE_24_GIGE_astronomy_cr_vldtd.pdf
http://gpbib.cs.ucl.ac.uk/gi2024/ICSE_24_GIGE_astronomy_cr_vldtd.pdf
http://gpbib.cs.ucl.ac.uk/gi2024/Craine_2024_GI.pdf
http://gpbib.cs.ucl.ac.uk/gi2024/Craine_2024_GI.pdf
http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/papers/callan_2024_GI.pdf
http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/papers/callan_2024_GI.pdf
http://gpbib.cs.ucl.ac.uk/gi2024/langdon_2024_GI.pdf
http://gpbib.cs.ucl.ac.uk/gi2024/langdon_2024_GI.pdf
http://gpbib.cs.ucl.ac.uk/gi2024/GI_ICSE2024_Nemeth.pdf
http://gpbib.cs.ucl.ac.uk/gi2024/Genetic_Improvement_for_DNN_Security.pdf
http://gpbib.cs.ucl.ac.uk/gi2024/Genetic_Improvement_for_DNN_Security.pdf
https://doi.org/10.1145/3468264.3473133
https://arxiv.org/abs/2404.18887
https://doi.org/10.1109/CEC.2016.7744177
https://doi.org/10.1109/CEC.2016.7744177
https://doi.org/10.1145/3583133.3596395
https://doi.org/10.1145/3583133.3596395
https://doi.org/10.1007/978-3-031-48796-5_12
https://doi.org/10.1016/J.ARTINT.2023.103962
https://doi.org/10.1007/978-3-031-56957-9_7
https://doi.org/10.1145/2338965.2336775
https://doi.org/10.1109/GI.2019.00010
https://doi.org/10.1109/GI.2019.00010
https://doi.org/10.1109/ICSE-SEIP.2019.00039
https://doi.org/10.1109/ICSE-SEIP.2019.00039
https://doi.org/10.1145/3387940.3392089
https://doi.org/10.1145/3524459.3527353
https://doi.org/10.1145/3524459.3527353
https://doi.org/10.1109/ICST57152.2023.00008
https://doi.org/10.1109/ICST57152.2023.00008
https://arxiv.org/abs/2402.04380
https://doi.org/10.1109/MS.2021.3071086
https://doi.org/10.1109/MS.2021.3071086
https://discovery.ucl.ac.uk/id/eprint/10187233


Etienne Windels, Olayori McBello, Abdurahman Atakishiyev, Kevin
Kells, and Matthew Pagano. Towards developer-centered automatic
program repair: findings from Bloomberg. In Proceedings of the 30th
ACM Joint European Software Engineering Conference and Symposium
on the Foundations of Software Engineering, ESEC/FSE 2022, pages
1578–588, Singapore, 2022. doi:10.1145/3540250.3558953.

[50] Guolong Zheng, ThanhVu Nguyen, Simón Gutiérrez Brida, Germán
Regis, Nazareno Aguirre, Marcelo F. Frias, and Hamid Bagheri. ATR:
template-based repair for Alloy specifications. In Proceedings of the
31st ACM SIGSOFT International Symposium on Software Testing
and Analysis, ISSTA 2022, pages 666–677, 2022. doi:10.1145/
3533767.3534369.

[51] Simón Gutiérrez Brida, Germán Regis, Guolong Zheng, Hamid Bagheri,
ThanhVu Nguyen, Nazareno Aguirre, and Marcelo Frias. Bounded
exhaustive search of Alloy specification repairs. In 2021 IEEE/ACM
43rd International Conference on Software Engineering (ICSE), pages
1135–1147, 2021. doi:10.1109/ICSE43902.2021.00105.

[52] Shahar Maoz and Jan Oliver Ringert. Spectra: a specification language
for reactive systems. Software and Systems Modeling, 20(5):1553–1586,
oct 2021. doi:10.1007/s10270-021-00868-z.

[53] Robert Feldt, Sungmin Kang, Juyeon Yoon, and Shin Yoo. Towards
autonomous testing agents via conversational large language models.
In 38th IEEE/ACM International Conference on Automated Software
Engineering, ASE 2023, Luxembourg, September 11-15, 2023, pages
1688–1693. IEEE, 2023. doi:10.1109/ASE56229.2023.00148.

[54] Michael O’Neill and Conor Ryan. Grammatical Evolution: Evolutionary
Automatic Programming in a Arbitrary Language, volume 4 of Genetic
programming. Kluwer Academic Publishers, 2003. doi:10.1007/
978-1-4615-0447-4.

[55] Riccardo Poli, William B. Langdon, and Nicholas Freitag McPhee. A
field guide to genetic programming. Published via http://lulu.com
and freely available at http://www.gp-field-guide.org.uk,
2008. (With contributions by J. R. Koza). URL: http://www.
gp-field-guide.org.uk.

[56] Hideyuki Takagi. Interactive evolutionary computation: Fusion of the
capabilities of EC optimization and human evaluation. Proceedings of
the IEEE, 89(9):1275–1296, September 2001. Invited Paper. doi:
10.1109/5.949485.

[57] Peter Bentley and David Corne, editors. Creative evolutionary
systems. Morgan Kaufmann, USA, 2002. URL: http://www.
amazon.com/Creative-Evolutionary-Kaufmann-Artificial-Intelligence/
dp/1558606734.

[58] Juan Romero and Penousal Machado, editors. The Art of Artificial Evo-
lution: A Handbook on Evolutionary Art and Music. Natural Computing
Series. Springer, 2008. doi:10.1007/978-3-540-72877-1.

[59] Pablo Funes, Elizabeth Sklar, Hugues Juille, and Jordan Pollack.
Animal-animat coevolution: Using the animal population as fitness
function. In Rolf Pfeifer, Bruce Blumberg, Jean-Arcady Meyer, and
Stewart W. Wilson, editors, From Animals to Animats 5: Proceedings of
the Fifth International Conference on Simulation of Adaptive Behavior,
pages 525–533, Zurich, Switzerland, August 17-21 1998. MIT Press.
doi:10.7551/mitpress/3119.003.0079.

[60] William B. Langdon, Westley Weimer, Christopher Timperley, Oliver
Krauss, Zhen Yu Ding, Yiwei Lyu, Nicolas Chausseau, Eric Schulte,
Shin Hwei Tan, Kevin Leach, Yu Huang, and Gabin An. The state and
future of genetic improvement. SIGSOFT Software Engineering Notes,
44(3):25–29, July 2019. doi:10.1145/3356773.3356801.

[61] William B. Langdon, Westley Weimer, Justyna Petke, Erik Fredericks,
Seongmin Lee, Emily Winter, Michail Basios, Myra B. Cohen, Aymeric
Blot, Markus Wagner, Bobby R. Bruce, Shin Yoo, Simos Gerasimou,
Oliver Krauss, Yu Huang, and Michael Gerten. Genetic Improvement
@ ICSE 2020. SIGSOFT Software Engineering Notes, 45(4):24–30,
October 2020. doi:10.1145/3417564.3417575.

[62] Alexander E. I. Brownlee. Genetic Improvement @ ICSE 2021: Personal
reflection of a workshop participant. SIGSOFT Software Engineer-
ing Notes, 46(4):28–30, October 2021. doi:10.1145/3485952.
3485960.

[63] William B. Langdon, Vesna Nowack, Justyna Petke, Erik M. Fredericks,
Gabin An, Aymeric Blot, Markus Wagner, and Hyeonseok Lee. Genetic
Improvement @ ICSE 2023. SIGSOFT Software Engineering Notes,
48(4):51–59, October 2023. doi:10.1145/3617946.3617956.

[64] W. B. Langdon and Riccardo Poli. Removal of the man-machine
interface bottleneck “Do what I ment not what I said”. In Grand
Challenges for Computing, Edinburgh, 24-26 November 2002. Discus-

sion paper. URL: http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/papers/
dwimrn0220.pdf.

[65] Westley Weimer, ThanhVu Nguyen, Claire Le Goues, and Stephanie
Forrest. It does what you say, not what you mean: Lessons from a decade
of program repair. ICSE 2019 Plenary Most Inflential Paper, 30 May
2019. URL: https://conf.researchr.org/profile/icpc-2019/westleyweimer.

https://doi.org/10.1145/3540250.3558953
https://doi.org/10.1145/3533767.3534369
https://doi.org/10.1145/3533767.3534369
https://doi.org/10.1109/ICSE43902.2021.00105
https://doi.org/10.1007/s10270-021-00868-z
https://doi.org/10.1109/ASE56229.2023.00148
https://doi.org/10.1007/978-1-4615-0447-4
https://doi.org/10.1007/978-1-4615-0447-4
http://www.gp-field-guide.org.uk
http://www.gp-field-guide.org.uk
https://doi.org/10.1109/5.949485
https://doi.org/10.1109/5.949485
http://www.amazon.com/Creative-Evolutionary-Kaufmann-Artificial-Intelligence/dp/1558606734
http://www.amazon.com/Creative-Evolutionary-Kaufmann-Artificial-Intelligence/dp/1558606734
http://www.amazon.com/Creative-Evolutionary-Kaufmann-Artificial-Intelligence/dp/1558606734
https://doi.org/10.1007/978-3-540-72877-1
https://doi.org/10.7551/mitpress/3119.003.0079
https://doi.org/10.1145/3356773.3356801
https://doi.org/10.1145/3417564.3417575
https://doi.org/10.1145/3485952.3485960
https://doi.org/10.1145/3485952.3485960
https://doi.org/10.1145/3617946.3617956
http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/papers/dwimrn0220.pdf
http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/papers/dwimrn0220.pdf
https://conf.researchr.org/profile/icpc-2019/westleyweimer

	Workshop Format and Participation
	Discussion/Future Topics
	Extension of Recent Work
	Understandable Automatic Changes
	Genetic Improvement for Specification Repair
	Doing the Impossible

	Workshop Outcomes
	GI 2024 Workshop Organisers
	GI 2024 Programme Committee
	References

