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Abstract. Dynamically adaptive systems (DAS) must cope with chang-
ing system and environmental conditions that may not have been fully
understood or anticipated during development time. RELAX is a fuzzy
logic-based specification language for making DAS requirements more
tolerable to unanticipated environmental conditions. This paper presents
AutoRELAX, an approach that generates RELAXed goal models that
address environmental uncertainty by identifying which goals to RE-
LAX, which RELAX operators to apply, and the shape of the fuzzy logic
function that defines the goal satisfaction criteria. AutoRELAX searches
for RELAXed goal models that enable a DAS to satisfy its functional
requirements while balancing tradeoffs between minimizing the number
of RELAXed goals and minimizing the number of adaptations triggered
by minor and adverse environmental conditions. We apply AutoRELAX
to an industry-provided network application that self-reconfigures in re-
sponse to adverse environmental conditions, such as link failures.

1 Introduction

A dynamically adaptive system (DAS) must identify and respond to changing
system and environmental conditions that may not have been fully understood
or anticipated during requirements analysis and design time. Within a DAS,
this contextual uncertainty arises from a combination of unpredictable environ-
mental conditions [1,2,5,24] that can limit the adaptation capabilities of a DAS.
RELAX [2,24] is a specification language that can be used in goal-oriented mod-
eling approaches for specifying and mitigating sources of uncertainty in a DAS.
This paper presents an approach for automatically RELAXing a goal-oriented
model to account for environmental uncertainty, thus potentially decreasing the
number of dynamic reconfigurations needed at run time.

It is unlikely for a DAS to always satisfy its requirements since it is often in-
feasible for a requirements engineer or a developer to identify all possible environ-
mental conditions that the DAS may encounter throughout its lifetime [2,24]. In
light of this implication, RELAX extends goal-oriented requirements modeling ap-
proaches, such as KAOS [4,14], with fuzzy logic-based operators that specify the
extent to which a goal can become temporarily unsatisfied and yet deliver accept-
able behavior. For instance, the “AS EARLY AS POSSIBLE” RELAX operator
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enables a DAS to satisfy a goal over a longer period of time [24]. Nevertheless,
it is difficult for a requirements engineer to assess, at design time, which goals to
RELAX, what RELAX operators to apply, and how a goal’s RELAXation will affect
the overall behavior of the DAS at run time.

This paper introduces AutoRELAX, an approach that extends and automates
an approach previously presented by Cheng et al. [2] for modeling sources of
uncertainty in a DAS with RELAX. AutoRELAX explicitly handles environmental
uncertainty in a DAS by automatically RELAXing goals in a KAOS goal model.
In particular, AutoRELAX specifies whether a goal should be RELAXed, and if so,
which RELAX operator to apply, and to what degree to lessen the constraints
or bounds that define a goal’s satisfaction criteria. AutoRELAX can be applied
to automatically generate one or more RELAXed goal models, each of which
enables a DAS to cope with specific manifestations of system and environmental
uncertainty while reducing the number of adaptations performed.

AutoRELAX leverages a genetic algorithm [9] as a search heuristic to efficiently
explore parts of the solution space comprising all possible RELAXed goal models.
Throughout the search process, AutoRELAX uses an executable specification of
the DAS to measure how candidate RELAXed goal models handle the effects of
system and environmental uncertainty. AutoRELAX applies a set of fitness sub-
functions that use this information to reward candidate RELAXed goal models
that enable a DAS to satisfy its functional requirements while also reducing the
number of adaptations the DAS performs and, consequently, the impact of a
dynamic reconfiguration at run time.

We demonstrate AutoRELAX by applying it to an industry-provided applica-
tion that handles the dynamic reconfiguration of a remote data mirroring (RDM)
network [11,12] that improves data availability and protection by replicating and
storing data at physically isolated locations. In particular, the RDM network
must distribute data even under adverse system and environmental conditions,
such as faulty network links and dropped messages. Experimental results show
that AutoRELAX can automatically generate RELAXed goal models that are as
good, if not better, than those manually created by a requirements engineer.
Moreover, experimental results also demonstrate that RELAXing the satisfac-
tion criteria of goals affected by uncertainty can reduce both the number of
adaptations and the level of disruption of an adaptation.

The remainder of this paper is organized as follows. Section 2 provides back-
ground material on remote data mirroring, goal-oriented requirements modeling,
RELAX, and genetic algorithms. Next, Section 3 presents the AutoRELAX process,
followed by an experimental evaluation in Section 4. Section 5 overviews related
work. Lastly, Section 6 summarizes findings and presents future directions.

2 Background

This section presents background material on remote data mirroring,
goal-oriented modeling, the RELAX specification language, and genetic
algorithms.
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2.1 Remote Data Mirroring

Remote data mirroring (RDM) [11,12] is a data protection technique that pre-
vents data loss and unavailability by storing replicates at physically remote lo-
cations. An RDM can be configured in terms of its network topology, such as
a minimum spanning tree or a redundant topology, as well as the method and
timing of data distribution among nodes. In particular, synchronous propaga-
tion automatically distributes every data modification to all other nodes. In
contrast, asynchronous propagation batches data modifications to coalesce edits
to the same data. While asynchronous propagation provides better network per-
formance than synchronous propagation, it also provides a weaker form of data
protection because batched data could be lost in the event of a site failure.

2.2 Goal-oriented Requirements Modeling

A goal declaratively specifies the objectives and constraints that a system must
provide and satisfy, respectively. A functional goal specifies a service that the
system must provide to its stakeholders. A goal can also be classified either as
an invariant or a non-invariant. While a system must always satisfy invariant
goals, a system may tolerate the temporary violation of a non-invariant goal.

A goal-oriented requirements model visually captures relationships between
goals by using a directed acyclic graph where a node represents a goal and
an edge represents a type of goal refinement [14]. For instance, KAOS [4,14]
provides a framework for systematically refining high-level functional goals into
finer-grained goals that are more amenable to analysis. Within KAOS, a goal
can be refined via an AND or OR refinement. A goal that has been AND-refined
can only be satisfied if every subgoal is also satisfied. Conversely, a goal that
has been OR-refined is satisfied if at least one subgoal has been satisfied. Goal
refinement continues until each leaf-level goal is assigned to an agent responsible
for satisfying that goal, which then defines a requirement.

The KAOS goal model in Figure 1 captures functional requirements of the
RDM application. RDMs must (A) maintain remotely stored copies of data.
To this end, RDMs must (B) maintain operational costs within the allocated
budget while (C) achieving acceptable levels of risk and (D) distributing data to
all other nodes. Before distributing data, the RDM must (E) measure network
properties and (F) construct a network by (P) activating and (Q) deactivating
network links. The system must then (I) send and (J) receive data, using either
(G) synchronous or (H) asynchronous propagation methods.

2.3 RELAX Specification Language

RELAX [24] is a language for specifying how sources of uncertainty that arise
at the shared boundary [10] between the system and its environment affects
requirements. RELAX organizes information about these sources of uncertainty
into ENV, MON and REL elements: ENV specifies environmental properties that
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Fig. 1. KAOS goal model for the remote data mirroring application

can be observed by the DAS; MON indicates sensors in the monitoring infrastruc-
ture of the DAS; and REL establishes mathematical relationships for computing
the values of ENV properties by aggregating values from MON elements.

Table 1 presents the fuzzy logic operators that RELAX provides for capturing
uncertainty in requirements. These ordinal and temporal operators add flexibility
in terms of how and when a requirement must be satisfied, respectively. For
example, goal (F) in Figure 1 specifies that the RDM shall “achieve zero network
partitions”. Nevertheless, unpredictable network link failures can temporarily
obstruct this goal. This goal can be RELAXed to state that the RDM shall
“achieve AS FEW network partitions AS POSSIBLE”, thus providing flexibility
to account for unanticipated events while distributing data. In this manner,
RELAX facilitates designing more flexible systems that might potentially require
fewer dynamic reconfigurations.

Table 1. RELAX operators

Temporal Operators Ordinal Operators

AS EARLY AS POSSIBLE AS FEW AS POSSIBLE

AS CLOSE AS POSSIBLE TO [frequency] AS CLOSE AS POSSIBLE TO [quantity]

AS LATE AS POSSIBLE AS MANY AS POSSIBLE

2.4 Genetic Algorithms

A genetic algorithm [9] is a stochastic search-based heuristic for efficiently solv-
ing complex optimization problems. In a genetic algorithm, a population com-
prises a set of individuals, each encoding a candidate solution. A fitness function
evaluates the quality of each individual, thereby guiding the search process to-
wards promising areas in the solution space. New solutions can be generated
with crossover and mutation operators. The crossover operator exchanges parts
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of existing solutions to form new individuals with, ideally, higher fitness values,
and the mutation operator randomly modifies an individual to maintain diverse
solution elements in the population. These operations are executed until the
maximum number of generations, or iterations, are exhausted.

3 Approach

This section introduces the AutoRELAX approach. First, we state the assump-
tions, inputs, and outputs of AutoRELAX. We then describe how AutoRELAX can
be applied to automatically generate RELAXed goal models.

3.1 Assumptions, Inputs, and Outputs

AutoRELAX needs three key input elements: a goal model, a set of utility functions
for requirements monitoring, and an executable specification or prototype of the
DAS. Next, we briefly describe the contents and purpose of each element.

Goal Model. AutoRELAX requires a goal model of the functional requirements
that the DAS must satisfy. Currently, we target KAOS goal models [4,14]. Each
goal must be designated as invariant or non-invariant.

Utility Function. A requirements engineer must derive utility functions that
can monitor the satisfaction of requirements in a DAS [8,17,22]. Each utility
function comprises mathematical relationships that map monitoring data to a
scalar value between zero and one. This value is proportional to how well a given
goal or requirement is satisfied at run time. For example, satisfaction of goal (B)
in the RDM application (see Figure 1) can be evaluated with a utility function
that returns one if operational costs have always been less than or equal to the
allocated budget, and zero otherwise. AutoRELAX uses these utility functions to
evaluate how goal RELAXations can affect DAS behavior.

Executable Specification. AutoRELAX requires an executable specification of
the DAS, such as a simulation or a prototype, that applies the set of utility
functions to measure how well the DAS satisfies its requirements in response
to adverse conditions. In addition, a requirements engineer must also specify
possible sources of uncertainty to which the DAS will be exposed. Ideally, these
sources of uncertainty will exercise the adaptation logic of the DAS by subjecting
it to unpredictable and adverse environmental conditions that can lead to a re-
quirements violation. For example, in our remote data mirroring application, we
configure the probability and frequency that a network link can fail or a message
can be dropped. Changing either the sources of uncertainty, their likelihood, or
frequency can lead to different types of RELAXed goal models.

3.2 AutoRELAX Process

Figure 2 presents a data flow diagram (DFD) that overviews the AutoRELAX

process. We now present each step in the AutoRELAX process in detail:
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Fig. 2. DFD diagram of AutoRELAX process

(1) Define Solution Structure. Each candidate solution in AutoRELAX com-
prises a vector of n elements or genes, where n is equal to the total number of
non-invariant goals in the KAOS goal model of the DAS. Figure 3(A), in turn,
shows the structure of each gene. As this figure illustrates, each gene comprises a
boolean variable that specifies whether a non-invariant goal will be RELAXed, a
corresponding RELAX operator (see Table 1), and two floating point values that
define the left and right boundaries of the fuzzy logic function, respectively.
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Fig. 3. Encoding a candidate solution in AutoRELAX

Figure 3(B) illustrates how each gene is mapped to a fuzzy logic function
that can be used to evaluate the satisfaction of a goal. In this example, the
unRELAXed satisfaction criteria (i.e., utility function) for goal (F) in Figure 1
returns 1.0 if the network is connected and 0.0 otherwise. Nevertheless, if the
network partition is transient, then it may be possible to continue the data
replication process amongst those nodes that are connected while the network
is reconfigured. Thus, as the bolded lines show in Figure 3(B), the satisfaction
criteria of this goal can be RELAXed by applying the “AS FEW AS POSSIBLE”
ordinal operator that maps to a left shoulder fuzzy logic function shape [24].
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For this RELAXed goal, the apex is still centered upon the ideal value of a
system or environmental property. In this case, zero network partitions and the
downward slope from the apex to the right endpoint reflects values that, while
not ideal, might be tolerated at run time. Note that the left endpoint value
encoded in the gene is not used for this particular fuzzy logic shape.

(2) Configure Search Process. A requirements engineer must configure Au-

toRELAX by specifying a population size, crossover and mutation rates, and a
termination criterion. The population size determines how many candidate RE-
LAXed goal models AutoRELAX can explore in parallel during each generation;
the crossover and mutation rates specify how AutoRELAX will generate new RE-
LAXed goal models; and the termination criteria specifies when AutoRELAX will
stop searching for new solutions and output the resulting RELAXed goal models.

(3) Evaluate RELAXed Models. To evaluate the quality of a RELAXed goal
model, AutoRELAX first maps the RELAX operators encoded in an individual to
their correspondingutility functions for requirementsmonitoring in the executable
specification (see Step 1). Next, AutoRELAX simulates the executable specification
and records the satisfaction of each goal as well as the number of adaptations per-
formed by the DAS. Two fitness sub-functions use this information to reward can-
didate RELAXed goal models for minimizing both the number of RELAXed goals
as well as howmany adaptations are triggered byminor environmental conditions.

The first fitness sub-function, FFnrg, rewards candidate solutions that mini-
mize the number of RELAXed goals:

FFnrg = 1.0− ( |relaxed|
|Goalsnon-invariant|

)

where |relaxed| and |Goalsnon-invariant| are the number of RELAXed and non-
invariant goals in the goal model, respectively. The intent of this fitness sub-
function is to preserve the intent of the original goal model by discouraging
AutoRELAX from unnecessarily introducing RELAX operators.

The second fitness sub-function, FFna, rewards candidate solutions that min-
imize the number of adaptations performed by the DAS in response to minor
and transient environmental conditions:

FFna = 1.0− ( |adaptations|
|faults|

)

where |adaptations| represents the total number of adaptations performed by the
DAS, and |faults|measures the total number of adverse environmental conditions
introduced throughout a simulation. This fitness sub-function rewards RELAXed
goal models that tolerate unanticipated environmental conditions and reduce the
number of adaptations a DAS performs, thereby reducing the number of passive
and quiescent components at run time [13]. While a passive component may ser-
vice transactions from other components, it may not initiate transactions.
In contrast, a quiescent component cannot initiate new transactions nor service
transactions from other components. Reducing the number of passive and quies-
cent components minimizes the impact of adaptation upon the DAS behavior.
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These two fitness sub-functions can be combined into a linear weighted sum:

Fitness Value =

{
αnrg ∗ FFnrg + αna ∗ FFna iff invariants true

0.0 otherwise

where αnrg and αna coefficients reflect the relative importance of each fitness
sub-function, the sum of which must equal 1.0.1 The fitness value of a RELAXed
goal model depends upon the satisfaction of all invariant goals. For example, if
a RELAXed goal model in our RDM application does not replicate every data
item, then its fitness value is 0.0. This penalty ensures only viable RELAXed goal
models, where all invariant goals are satisfied, are output as solutions.

(4) Select RELAXed Models. Using the fitness value associated with each
evaluated RELAXed goal model, AutoRELAX selects the most promising individ-
uals from the population to guide the search process towards that area of the
solution space. To this end, AutoRELAX applies tournament selection [9], a tech-
nique that randomly selects k individuals from the population and competes
them against one another. The RELAXed goal model with the highest fitness
value amongst these k solutions survives onto the next generation.

(5) Generate RELAXed Models. AutoRELAX uses two-point crossover and
single-point mutation to generate new RELAXed goal models, which were set
to 50% and 40% for this work, respectively. As Figure 4(A) shows, two-point
crossover takes two individuals from the population as parents and produces
two new RELAXed goal models as offspring. As this figure illustrates with dif-
ferent shading, two-point crossover exchanges the genes between two randomly
chosen indices. In contrast, Figure 4(B) shows how single-point mutation takes
an individual from the population and randomly modifies the values of a single
gene. In this particular example, the effect of the mutation operator is to change
a gene such that its corresponding non-invariant goal is now RELAXed with the
“AS MANY AS POSSIBLE” RELAX operator. In this manner, while crossover
attempts to construct better solutions by combining good elements from exist-
ing RELAXed goal models, mutation introduces diverse sets of goal RELAXations
that might not be obtainable otherwise.
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Fig. 4. Generating new RELAXed goal models with crossover and mutation operators

1 Although fitness sub-functions can be combined in different ways, we find that a
linear-weighed sum facilitates the balancing of competing concerns.
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(6) Output RELAXed Models. AutoRELAX iteratively applies steps (3)
through (5) until it reaches its generational limit. Then, AutoRELAX outputs one
or more RELAXed goal models with the highest fitness values in the population.

4 Experimental Results

This section describes our experimental setup and discusses the experimental
results where we apply AutoRELAX to a RDM application.

4.1 Experimental Setup

For this work, we modeled the RDM network as a completely connected graph
where a node represents an RDM and an edge represents a network link. In
particular, the network consists of 25 RDMs and 300 network links that can be
activated and used to transfer data between RDMs. We leverage an RDM opera-
tional model previously presented by Keeton et al. [12] to generate performance
attributes of each RDM and network link. Each network simulation executes
for 150 time steps. Throughout each simulation, 20 data items are randomly
inserted at different RDMs that are then responsible for distributing those data
items to all other RDMs.

The RDM network is subject to environmental uncertainty in the form of
unpredictable network link failures and dropped messages. As such, the RDM
network might need to self-adapt in response to these adverse system and envi-
ronmental conditions. To this end, each RDM implements the dynamic change
management (DCM) protocol previously introduced by Kramer and Magee [13].
Furthermore, we implemented a rule-based adaptation engine that monitors the
satisfaction of each goal to determine if the network structure and propagation
parameters need to be reconfigured. If an adaptation is warranted, then Plato [18]
and the DCM protocol are executed to generate a target system configuration
and a series of reconfiguration steps that safely transitions the executing system
from its current configuration to its target configuration, respectively.

We compare and evaluate the resulting RELAXed goal models produced by
AutoRELAX with two different goal models of the same RDM application, the
unRELAXed goal model shown in Figure 1 and a goal model manually RELAXed
by a requirements engineer. The manually RELAXed goal model consists of five
goal RELAXations: goal (C) is RELAXed to allow larger exposures to data loss;
goal (D) is RELAXed to add temporal flexibility when diffusing data; goal (F)
is RELAXed to allow up to three simultaneous network partitions; and goals (I)
and (J) were RELAXed to tolerate dropped messages.

We use the fitness functions presented in Section 3 to compare these mod-
els and illustrate the benefits of RELAXing a goal model to address uncertainty
as well as demonstrate that AutoRELAX is capable of generating RELAXed goal
models that are as good, if not better, than those manually created by a require-
ments engineer. We set αnrg to 0.3 and αna to 0.7, thereby emphasizing the
reduction in the number of adaptations performed. For statistical purposes, we
conducted 50 trials of each experiment and, where applicable, plot or report the
mean values with corresponding error bars or deviations.
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4.2 Uncertain Environment

For this experiment, we define the first null hypothesis, H10, to state that there
is no difference between a RELAXed and an unRELAXed goal model. In addition,
we also define a second null hypothesis, H20, to state that there is no difference
between RELAXed goal models generated by AutoRELAX and those manually
created by a requirements engineer.

Figure 5 presents three box plots with the fitness values obtained by generated
AutoRELAXmodels, a manually created RELAXed goal model, and an unRELAXed
goal model, respectively, with the latter two being conducted only once. As these
box plots illustrate, despite the fitness boost unRELAXed goal models obtain by
not introducing any goalRELAXations (see Section 3, FFnrg),RELAXed goalmod-
els achieved statistically significant higher fitness values than unRELAXed goal
models (p < 0.001,Welch Two Sample t-test). These results enable us to reject our
first null hypothesis, H10, as well as conclude that RELAX does indeed reduce the
number of adaptations when addressing system and environmental uncertainty.

The box plots in Figure 5 also demonstrate that AutoRELAX generated RE-
LAXed goal models achieved statistically significant higher fitness values than
those manually created by a requirements engineer (p < 0.001, Welch Two Sam-
ple t-test). As a result, we also reject our second null hypothesis, H20 and con-
clude that AutoRELAX is capable of generating RELAXed goal models that better
address specific sources of uncertainty than manually RELAXed goal models.

Figure 6 presents three sets of box plots that capture the adaptation costs
incurred by generated AutoRELAX models, a manually created RELAXed goal
model, and an unRELAXed goal model, respectively. Specifically, each set of box
plots measures the amount of time components in the RDM network were in
active, passive, and quiescent modes during a reconfiguration (these plots do
not include time outside of a reconfiguration). As this figure illustrates, a key
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Fig. 5. Fitness values comparison between RELAXed and unRELAXed goal models.



208 A.J. Ramirez et al.

Active Passive Quiescent

0
50
0

10
00

15
00

AutoRELAXed

Ti
m

e 
st

ep
s

Active Passive Quiescent

0
50
0

10
00

15
00

Manually RELAXed

Ti
m

e 
st

ep
s

Active Passive Quiescent

0
50
0

10
00

15
00

UnRELAXed

Ti
m

e 
st

ep
s

Fig. 6. Adaptation costs comparison between RELAXed and unRELAXed goal models

reason for why RELAXed goal models outperform unRELAXed goal models is
that by carefully lessening the satisfaction criteria of non-invariant goals, the
number of adaptations decrease and so does the amount of time components
spend in passive and quiescent modes during a reconfiguration.

Both Figures 5 and 6 show that AutoRELAX is able to generate RELAXed goal
models that perform better than manually RELAXed goal models. Examining the
automatically generated RELAXed goal models suggests two primary reasons for
this difference in fitness values and, consequently, in adaptation costs. First, while
the manually RELAXed goal model introduced RELAXations to goals (C), (D),
(F), (I), and (J), AutoRELAX mostly introduced RELAX operators to goals (F),
(I), and (J), thereby slightly boosting its fitness value in comparison. Second, the
manually RELAXed goal model contained some goal RELAXations that were too
constrained. For instance, AutoRELAX was able to extend the goal satisfaction
boundary of goal (F) beyond the bounds applied in the manually RELAXed goal
model. As a result, the goal model produced by AutoRELAX was able to tolerate
a greater number of temporary network partitions while allowing components to
remain actively distributing data throughout the network.

Threat to Validity. This research was a proof of concept study to deter-
mine if it is possible to automatically RELAX goal models to produce viable goal
models. We applied the technique on a problem provided to us from industrial
collaborators. As a point of reference, we compared the AutoRELAXed goal mod-
els to those developed by a requirements engineer. Threats to validity include
whether this technique will achieve similar results with other goal models and
other applications. While, we did not intend to study human effectiveness [20],
the positive results motivate its study explicitly as part of future work.
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5 Related Work

This section presents related work on obstacle mitigation, expressing uncertainty
in requirements, and requirements monitoring.

Obstacle Mitigation. van Lamsweerde et al. [14,15] proposed a set of strategies
to facilitate the systematic identification, analysis, and resolution of obstacles,
or conditions that prevent a system from satisfying its objectives. If an obstacle
cannot be prevented, then one of their proposed mitigation strategies consists
of tolerating the violation of a goal. This strategy, however, does not specify the
extent to which a goal can become unsatisfied without adversely affecting other
goals. From this perspective, AutoRELAX complements their proposed mitigation
strategies by automatically determining if, and to what extent, a goal can become
unsatisfied at run time.

Although the heuristics proposed by van Lamsweerde et al. [14,15] facilitate
the systematic identification and analysis of obstacles, unpredictable environ-
ments may still prevent a DAS from satisfying its requirements. Letier and van
Lamsweerde [16] also introduced a probabilistic framework for specifying the
probability of a goal being satisfied. These probabilities, which can be obtained
from a domain expert or derived from actual system usage data, can be used to
identify previously unknown obstacles. In contrast to AutoRELAX, however, their
probabilistic framework treats requirements as being either strictly satisfied or
not. AutoRELAX could leverage the probability of a goal being satisfied when
identifying goals that might benefit from RELAXation.

Expressing Uncertainty in Requirements. Fuzzy set theory has been re-
cently applied to represent and analyze the effects of uncertainty in requirements.
For instance, Whittle et al. [24] introduced RELAX to facilitate the identification
and analysis of sources of uncertainty in a DAS. Cheng et al. [2] extended RELAX
to support the modeling of RELAXed goals in a KAOS goal model [4,14]. Simi-
larly, Baresi et al. [1] presented FLAGS, a KAOS goal modeling framework that
introduces the concept of a fuzzy goal whose satisfaction is evaluated through
fuzzy logic functions. Both RELAX and FLAGS depend on a requirements engi-
neer to manually determine goals that may become unsatisfied, as well as how
much flexibility to introduce for each goal’s satisfaction criteria. AutoRELAX au-
tomates this process.

Welsh et al. [23] introduced Claims as markers of uncertainty that capture
doubts about how a given goal realization strategy contributes to the satisfice-
ment [3], or satisfaction of a degree, of a soft goal. If a Claim is proven false
at run time, then the DAS self-reconfigures towards a more desirable goal real-
ization strategy. Although AutoRELAX focuses on RELAXing the satisfaction of
functional non-invariant goals, it could be extended to also automatically RELAX
the satisfaction criteria of soft goals.

Requirements Monitoring and Reflection. Feather et al. [6,7] developed re-
quirementsmonitoring frameworks that can detect the occurrence of obstacles and
reconfigure the system in response if necessary. More recently, Sawyer et al. [19]
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suggested promoting requirements to live run-time entities whose satisfaction can
be evaluated in support of adaptation decisions. Their concept is similar to the
feedback-loopAwarenessRequirements (AwReqs) construct proposed by Souza et
al. [21] where meta-level requirements manage the satisfaction of other require-
ments. None of these approaches, however, support the management or run-time
monitoring of RELAXed requirements. If these requirements monitoring and man-
agement frameworks were extended to support RELAXed requirements, then
AutoRELAX could be applied to automatically specify the satisfaction criteria of
RELAXed goals while these frameworks handle the run-time logistics of monitor-
ing their satisfaction at run time.

6 Conclusions

In this paper we presented AutoRELAX, an approach that applies a genetic al-
gorithm to automatically generate RELAXed goal models that can mitigate the
effects of uncertainty upon the self-assessment capabilities of a DAS. By pro-
viding automated tool support, AutoRELAX relieves requirements engineers from
the daunting task of considering a large number of strategies for dealing with
uncertainty. We applied AutoRELAX to a RDM application that must distribute
data to all nodes within the network while self-reconfiguring in response to net-
work link failures and dropped messages. When compared with an unRELAXed
goal model, experimental results show that RELAX is able to reduce the number
of adaptations, and therefore adaptation costs, that would otherwise be incurred
by minor and transient environmental conditions. Results also show that AutoRE-
LAX can generate RELAXed goal models of equal or greater quality than those
manually created by a requirements engineer.

AutoRELAX automatically provides feedback about sources of uncertainty. In
these experiments, the goal RELAXations introduced by AutoRELAX concurred
with the specific sources of uncertainty. Specifically, AutoRELAX introduced goal
RELAXations to goals (F) and (J) depending on whether network links were
more likely to fail than messages dropped, and vice-versa. Interestingly enough,
AutoRELAX always RELAXed goal (J). By analyzing our goal models with this
information we noted that, in contrast to goals (F) and (J), the satisfaction
of goal (I) is affected by both network failures and dropped messages. Thus,
the environmental uncertainty introduced in our experiments would frequently
cause goal (I) to be violated and the network to self-reconfigure in response.
As such, AutoRELAX automatically identified how sources of uncertainty affected
this specific goal and then introduced RELAXed operators to lessen its impact.

Future directions include extending the search parameters to also optimize
the underlying shape (i.e., triangle versus trapezoid) of the fuzzy logic function
that defines the satisfaction criteria of a RELAXed goal, as well as extending
AutoRELAX to support the automatic RELAXation of non-functional goals.
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