
Incorporating Multiple Self-Adaptive Agents in Games
Steven Streasick

streasis@mail.gvsu.edu
Grand Valley State University
Allendale, Michigan, USA

Erik M. Fredericks
frederer@gvsu.edu

Grand Valley State University
Allendale, Michigan, USA

Byron DeVries
devrieby@gvsu.edu

Grand Valley State University
Allendale, Michigan, USA

Ira Woodring
woodriir@gvsu.edu

Grand Valley State University
Allendale, Michigan, USA

ACM Reference Format:
Steven Streasick, Erik M. Fredericks, Byron DeVries, and Ira Woodring.
2025. Incorporating Multiple Self-Adaptive Agents in Games. In 33rd ACM
International Conference on the Foundations of Software Engineering (FSE
Companion ’25), June 23–28, 2025, Trondheim, Norway. ACM, New York, NY,
USA, 8 pages. https://doi.org/10.1145/3696630.3730555

Abstract
A self-adaptive system (SAS) is capable of modifying its behavior at
run-time to address uncertainty. For games, these self-adaptations
can present a more dynamic experience (e.g., changing difficulty,
optimizing performance), thereby enabling run-time updates to mit-
igate potential issues experienced during gameplay. For example,
a self-adaptation may result in emergent behaviors that keep the
player engaged or optimize performance to support a multitude
of device configurations. Notably, games that leverage a run-time
feedback loop have previously demonstrated success in optimizing
a game’s frame rate. However, multi-agent systems that incorpo-
rate self-adaptation remain largely unexplored in the video games
domain. This paper demonstrates a novel approach for using mul-
tiple goal models with competing metrics for expressing optimal
behavior in balancing and mitigating video game uncertainties. To
support this goal, we adapt an existing browser-based game to a
new framework that incorporates two distinct self-adaptive agents
with potentially competing objectives.

1 Introduction
Games that are designed to adapt to player performance can create
a more engaging and resilient game experience for the player. For
example, a game that scales its difficulty to the player can provide
a balance between keeping the player engaged and avoiding frus-
tration, thereby achieving a flow state [8, 18]. This approach to
game design is known as dynamic difficulty adjustment (DDA),
where DDA can mitigate “staleness” a game may present if the
player grows tired of its mechanics over time [31, 37]. However,
other targets for optimization and adaptation can be useful for
supporting a satisfactory player experience, such as maintaining
an adequate frame rate and minimizing technical glitches. Here,

This work is licensed under a Creative Commons Attribution 4.0 International License.
FSE Companion ’25, Trondheim, Norway
© 2025 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1276-0/2025/06
https://doi.org/10.1145/3696630.3730555

dynamic performance adjustment (DPA) can be used to optimize
player experience by adapting as a result of unexpected situations or
negative behaviors expressed as a result of system limitations [22].
In this paper we focus on DPA, however we anticipate that DDA
could be incorporated as well.

One approach for enabling adaptation is to deploy an application
as a self-adaptive system (SAS). An SAS can modify its behavior
to adjust for changes that occur within the system and environ-
ment [15, 21]. Self-reconfigurations occur autonomously as a result
of decisions made by a controlling feedback loop to optimize a
system and/or mitigate uncertainty. One common model for im-
plementing a self-adaptive feedback loop is the monitor, analyze,
plan, and execute with a shared knowledge base (MAPE-K) [15].
For example, a video game that employs a MAPE-K loop may self-
reconfigure in the event that a network connection is laggy to
reduce “rubber-banding” by offloading server-based decisions to
a local (yet ideally secured) process. Additionally, a MAPE-K loop
can be implemented to allow for adaptations based on real-time
system metrics (e.g., CPU usage, memory consumption, request
load) [11]. Previous works have demonstrated the feasibility of
an SAS loop within game development [11, 31]. In practice, this
often diminished the cohesion of the game, with several unrelated
operations being held within the singular SAS loop.

In this paper we propose a novel approach for incorporating
independent agents within a game environment that each have
the capability to self-reconfigure with the aims of optimizing both
performance and difficulty, where some metrics may be considered
adversarial in nature. As such, we focus on providing framework
support for incorporating DPA and DDA in our proof-of-concept
system comprising multiple agents that each implement their own
respectiveMAPE-K loop. The potential problemwith including both
DDA and DPA in a singular system is that an increase in difficulty
(e.g., increasing the number of enemies) can in turn decrease the
overall performance of the game. Likewise, a decrease in difficulty
can increase the performance of the game. We created goal models
for each SAS agent to formalize their objectives [9, 33], derived util-
ity functions to quantify the performance of each goal [10, 27, 34],
and developed self-adaptive overlays for the game entities to use
at run time, respectively. The results of our study suggest that
deploying multiple MAPE-K loops can be used to significantly im-
prove game performance while supporting the objectives of DPA
and DDA. The remainder of this paper is structured as follows.
Section 2 presents background information for our motivating ex-
ample, goal modeling, utility functions, and SASs. Section 3 details

https://orcid.org/
https://orcid.org/0000-0003-4287-3339
https://orcid.org/
https://orcid.org/
https://doi.org/10.1145/3696630.3730555
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3696630.3730555

FSE Companion ’25, June 23–28, 2025, Trondheim, Norway Steven Streasick, Erik M. Fredericks, Byron DeVries, and Ira Woodring

our approach for incorporating multiple MAPE-K agents within a
game environment. Section 4 presents the results of our empirical
study. Section 5 highlights related work in DDA, DPA, SASs, and
multi-agent systems. Lastly, Section 6 discusses our results and
presents future avenues for research. Our source code and data
have been published as open source on our GitHub repository.1

2 Background
This section presents ourmotivating example and discusses relevant
background information on goal modeling and SASs.

2.1 Motivating Example
Wedeveloped a proof-of-concept game usingGodot 4.3 andGDScript2
to demonstrate our self-adaptive agents based on a prior browser-
based iteration of our game [11]. Figure 1 shows a screenshot of
our proof of concept game. The game concept is as follows: a player
(blue circle) can eat enemies (dark circles) if they are smaller in
size, thereby increasing the player’s score and size, respectively.
If a larger enemy touches the player, or if the player touches an
environmental hazard, then the game is over. A player can collect
powerups that allow the player to “eat” walls and become invincible
for a short period of time.

In our game, enemies and the game engine each represent in-
dividual self-adaptive agents with their own governing feedback
loops, where these loops enable self-adaptation (described next in
Section 2.3) to reconfigure in response to needs for performance
optimization (i.e., DPA) or player satisfaction (i.e., DDA). As such,
DDA is an approach for automatically adjusting game difficulty
based on player interactions to optimize towards player enjoyment
and reduce frustrations [31, 37]. Within the context of our game we
minimally implement DDA with the aim of optimizing satisfaction
of each goal within our goal model (c.f., Section 2.2).

2.2 Goal Modeling
Goal modeling, or goal-oriented requirements engineering (GORE),
provides a visual representation of key objectives and requirements,
typically via an acyclic graph that includes goals, requirements
and/or expectations, and agents [33]. Knowledge Acquisition in
Automated Specification (KAOS) is one form of goal modeling that
includes AND- and OR-refinements [9, 33], where an AND-refined
goal must have all its child goals be satisfied and an OR-refined
goal only requires that one child goal be satisfied. Figure 2 presents
two goal models used in our application that demonstrate KAOS.
For example, Goal (E.a) is only satisfied if both (E.b) and (E.c)
are satisfied.

Figure 2 presents two separate KAOS goal models for individual
agents in our game. The goal model on the left side specifies the
objectives of an enemy within our game and the goal model on
the right side specifies the game engine’s objectives. Such a system
can be considered a multi-agent system [14, 17], where agents
in this application are autonomous yet not necessarily working
towards the same overall goal. For example, the enemy’s top-level
goal ((E.a) [Maintain] Playability) aims to keep the player “happy”

1See https://github.com/StevenStreasick/Incorporating-Multiple-Self-Adaptive-
Agents-in-Games.
2See https://godotengine.org/.

(a) Zoomed-out view of game (no adaptation).

(b) Zoomed-in view of game (FPS optimization).

Figure 1: Screenshots of our proof-of-concept game. The blue
circle in the middle represents the player, the dark circles
represent enemies, and the other items represent walls (i.e.,
Godot logo), hazards (i.e., mines), and powerups (i.e., fire
icons).

with their experience, yet the game engine’s top-level goal ((G.a)
[Maintain] Game Active) focuses on keeping the game active as long
as possible. There is a dependency relationship between goals (E.c)
and (G.d), as both aim to provide the player with an adequate frame
rate and use similar utility functions. Note that the player is not
included as an agent within the goal models as their input has does
not have a direct impact on the key objectives presented here.
Utility functions mathematically quantify the satisficement (i.e.,
degree of satisfaction, typically normalized within [0.0, 1.0]) of a
requirement or goal [10, 27, 34]. For an SAS, a utility function can
serve as a lightweight mechanism for the monitoring component to
act as a software sensor. A sample utility function for Goal (G.e)
is as follows in Equation 1, where the system designers selected a
threshold of 𝐹𝑃𝑆𝑚𝑖𝑛 = 850 to represent the minimum FPS allowed
and a threshold of 𝐹𝑃𝑆𝑚𝑎𝑥 = 1400 to denote an ideal maximum
FPS. Additionally, threshold values of 𝐹𝑃𝑆𝑡1 and 𝐹𝑃𝑆𝑡2 were set to
1000 and 850, respectively, with corresponding utility value ranges
of (1.0, 0.73) and (0.73, 0.0). Note that for presentation purposes
we have simplified this goal, however its calculation additionally
considers the current and prior zoom levels as well. These values
were selected based on empirically-derived values in testing our
game prototype and monitoring Godot’s reported FPS values.3

3“Typical” frame rates (e.g., 30 – 120) would result in minimal adaptations given our
prototype’s relative simplicity.

https://github.com/StevenStreasick/Incorporating-Multiple-Self-Adaptive-Agents-in-Games
https://github.com/StevenStreasick/Incorporating-Multiple-Self-Adaptive-Agents-in-Games
https://godotengine.org/

Incorporating Multiple Self-Adaptive Agents in Games FSE Companion ’25, June 23–28, 2025, Trondheim, Norway

Game
Engine

[Achieve]
Player Score

[Achieve]
Maximum

FPS

[Maintain]
Playability

[Maintain]
Minimum

FPS

[Maintain]
Game Active

Enemy AI

[Achieve]
Ideal Number

of Enemies

[Achieve]
Ideal Enemy

Size

[Achieve]
Ideal Enemy

Speed

[Maintain]
Difficulty

[Maintain]
Playability

[Achieve]
Ideal Camera

Zoom

[Maintain]
FPS

Satisfaction
(G.b)

(G.a)

(G.c)

(G.d) (G.e) (G.f)

(E.a)

(E.b) (E.c)

(E.d) (E.e) (E.f)

Legend

Requirement

Goal

Agent

Refinement

Dependency

Legend

Requirement

Goal

Agent

Refinement

Dependency

Figure 2: Goal models describing key objectives for enemy agents and the game engine.

𝑢𝑡𝑖𝑙𝐺.𝑒 =

1.0 𝑖 𝑓 𝐹𝑃𝑆 > 𝐹𝑃𝑆𝑚𝑎𝑥

(1.0, 𝑥, 0.73) 𝑖 𝑓 𝐹𝑃𝑆𝑚𝑎𝑥 < 𝐹𝑃𝑆 < 𝐹𝑃𝑆𝑡1

(0.73, 𝑥, 0.0) 𝑖 𝑓 𝐹𝑃𝑆𝑡1 < 𝐹𝑃𝑆 < 𝐹𝑃𝑆𝑡2

0.0 𝑒𝑙𝑠𝑒

(1)

𝑢𝑡𝑖𝑙𝐺.𝑒 aims to continuously present an ideal zoom value that is
defined as a result of the framerate, with a value of 1.0 indicating
that the FPS exceeds the designer-specified threshold (i.e., 1400 FPS),
a value of 0.0 indicating that a minimum threshold was violated
(i.e., 850 FPS), and values in between are linearly scaled to represent
the degree of satisficement for the goal.

2.3 Self-Adaptive Systems
SASs are applications that can self-reconfigure at run time in re-
sponse to expected and/or unexpected issues that manifest as a
result of uncertainty [15, 21]. Typically, an SAS is constructed with
a feedback loop that enables adaptation with the aim of optimizing
requirements satisfaction, where sample adaptations can include
updating system configurations/parameters, changing algorithms,
or updating system decision making [7, 28]. An SAS will perform
these measures due to expressed uncertainty, where sources of
uncertainty in this space can include unexpected player interac-
tions, misconfigured system parameters, and differing hardware
configurations [5, 6, 19, 26]. We implement theMonitor-Analyze-
Plan-Adapt-Knowledge (MAPE-K) loop [15], though there exist
other forms of self-adaptive feedback loops [4]. With respect to our
motivating example, our game will:

• Monitor: each agent within our system is responsible for
monitoring the satisficement (i.e., the degree of satisfaction)
for each goal within its respective goal model.

• Analyze: each agent monitors its utility values to determine
if a reconfiguration is necessary; moreover, each agent has a
defined set of reconfiguration strategies that can be triggered
to improve itself or the system as a whole.

• Plan: each agent will determine which reconfiguration strat-
egy is ideal based on the utility values indicating that an
adaptation is necessary. For example, a violation of Goal
(E.d) can result in a strategy to significantly increase the
number of instantiated enemies on screen.

• Execute: the selected reconfiguration strategy is then either
immediately implemented by its respective agent or sched-
uled, depending on its impact. For instance, if both Goals
(E.c) and (G.d) were violated then only one zoom adap-
tation is necessary to cull drawn entities on screen. Ideally
execution of a reconfiguration strategy is performed safely
(i.e., without causing system degradation or violating system
invariants).

• Knowledge: information regarding individual goal satisfac-
tion (i.e, utility value calculation) and monitored system
metrics are shared via a centralized entity within our game
that is publicly accessible.

For example, one of our main system invariants (c.f., Figure 2,
Goal (G.b)) is to [Maintain] Minimum FPS. For this case, a violation
is considered to be a catastrophic failure and cannot be resolved via
self-reconfiguration. However, one of the supporting non-invariants
(Goal (G.d) - [Achieve] Maximum FPS) can temporarily tolerate
transient failure and therefore is a target for adaptation. Moreover,
satisfaction of this goal directly supports the satisfaction of its
parent goal (G.b), though in combination with another goal (Goal
(G.e) - [Achieve] Ideal Camera Zoom), to support this effort. In
this case, if the utility function associated with Goal (G.d) is not
satisfied then a reconfiguration strategy may be to “zoom in” on

FSE Companion ’25, June 23–28, 2025, Trondheim, Norway Steven Streasick, Erik M. Fredericks, Byron DeVries, and Ira Woodring

MAPE-K loops

(2)
Derive Goal

Model(s)

(3)
Derive Utility

Functions

(1)
Identify

Individual
Agents

Agents Goal
Models

(4)
Evaluate Utility

Functions

(5)
Form

Adaptation
Strategy

(6)
Execute

Adaptation
Strategy

Utility
Functions

Utility values

Adaption
Plan

Adaptation

Utility Values (A)

Utility Values (B)

Game
Engineer

Game World Specifications

Legend

Optional Data flowOptional Data flow

Data flowData flowProcessProcess

MAPE-K loopMAPE-K loop AgentAgent

Data storeData store

Legend

Optional Data flow

Data flowProcess

MAPE-K loop Agent

Data store

Agent History

Past States

Game Engine

Agents

Agent Context
Game Design Specifications

Other Goal
Models

Utility Functions

Figure 3: Data flow diagram describing our approach for incorporating multiple MAPE-K loops within our game prototype.
Utility Values (A) and (B) denote two separate agents within our framework, though 𝑛 sets of utility values may be defined as
needed.

the player, thereby reducing the number of drawn entities on the
screen and improving the framerate. In our approach, correlation
of utility functions to adaptations is manually defined and more
than one utility function can contribute to an adaptation decision.

3 Approach
This section describes our approach for incorporating multiple
MAPE-K loops within a game environment. First, we describe the
required inputs, expected outputs, and any assumptions necessary.
Then, we describe our approach in detail.

3.1 Inputs, Outputs, and Assumptions
The system requires as input a set of goal models with respec-
tive utility functions for each agent and a game engine capable of
supporting multiple adaptations. The goal model represents the
functional and non-functional requirements of the SAS while the
utility functions measure the agent’s satisficement of each goal.
Outputs include the logged utility values, system metrics, and num-
ber of adaptations performed over time. Assumptions include that
the utility functions adequately quantify the performance of each
goal, that goals in each goal model are well-aligned with an agent’s
key objectives, and that there exists no discrepancies in translating
requirements to code. Additionally, we assume that the negative
effects of including MAPE-K overlays into a game linearly impact
performance metrics and can moreover be resolved by reconfigura-
tion if necessary.

3.2 Adaptation Technique
This section details our technique for incorporating multiple self-
adaptive agents within a game environment to optimize the game
experience for the player. Figure 3 presents a data flow diagram
that illustrates each step of the process.
(1) Identify Individual Agents: The agents that are chosen within
this step are the entities responsible for the adaptations of the
system. A key consideration when choosing agents are their relative
independence within the framework, their ability to introspect on
their behavior, and their support for self-reconfiguration at run
time.
(2) Derive Goal Models: High-level objectives, including func-
tional and non-functional system requirements, are formalized into
goal model representations. The goal modeling syntax is a design de-
cision, however for the purposes of this paper we follow the KAOS
approach. Goal models may additionally include cross-cutting con-
cerns that impact multiple agents (e.g., Figure 2, Goals (E.c) and
(G.d)).
(3) Derive Utility Functions: Next, a utility function is derived
to quantify the performance/behavior of each goal, where depen-
dencies between models may use the same monitored values in
support of their respective utility functions (e.g., 𝐹𝑃𝑆 for Goals
(E.c) and (G.d)). In this paper we normalize all utility functions
to return a value on [0.0, 1.0] to provide comparable metrics for
analysis, where 0.0 indicates a violation, 1.0 indicates satisfaction,
and (0.0, 1.0) indicates a degree of satisficement.
(4) Evaluate Utility Functions: At run time, utility functions are
evaluated as part of themonitor and analysis phases of the MAPE-K
loop to determine if an adaptation is necessary. Depending on the

Incorporating Multiple Self-Adaptive Agents in Games FSE Companion ’25, June 23–28, 2025, Trondheim, Norway

goal, calculated utility values may be shared/reused if dependen-
cies between goals exist. For example, Equation 1 measures the
performance of Goal G.e. If the goal is violated (i.e., 𝐹𝑃𝑆 < 𝐹𝑃𝑆𝑚𝑖𝑛 ,
resulting in a value of 0.0), then a reconfiguration strategy will
be necessary to improve zoom level and FPS to resolve the goal
violation.
(5) Form Adaptation Strategies: If a reconfiguration strategy is
determined to be necessary then the respective agent will select an
appropriate adaptation. For example, the enemy agent can choose
to reduce the number of enemy entities being instantiated or update
the velocity and/or size of instantiated entities. The game engine
can change the camera zoom level to reduce the number of entities
drawn on screen. Following the example in (4), the camera will
zoom in to reduce the number of drawn entities on the screen.4
(6) Execute Adaptation Strategies: Finally, the chosen adaptation
strategy is executed and the MAPE-K loop continues. Adaptations
are immediately executed in the context of our proof of concept
game, however, depending on the application and the impact of
the reconfiguration, system actions may be buffered or paused to
minimize negative impacts.

4 Experimental Results
This section presents our results of incorporating multiple agents
controlled by MAPE-K loops within a video game environment.

4.1 Experimental Configuration
For this study, our game was programmed within Godot 4.3 using
GDScript. All recorded runs demonstrated “win” conditions where
the player was alive for 45 seconds and was not consumed by a
larger enemy. Metrics for only the last 30 seconds were captured to
allow adequate time for the system to first stabilize. We used four
separate hardware configurations and performed 10 experimental
replicates per configuration.

• Computer A : Dell XPS 13 9310, Intel i7-1185G7 CPU, 16GB
RAM, Intel Iris Xe, Windows 10 Pro

• Computer B : Desktop, Intel i5-9600K CPU, 16GB RAM,
NVIDIA RTX 4060 Ti, Windows 10 Home

• Computer C : Dell Latitude 7400, Intel i7-8665U CPU, 32GB
RAM, Intel integrated graphics, Pop_OS!

• Computer D : Lenovo Legion Pro 7, AMD Ryzen 9 7945HX,
32GB RAM, NVIDIA RTX 4080, EndeavorOS

4.2 Experimental Results
We recorded the number of adaptations that occurred within the
models during our experiment. Figure 4 presents the total number
of adaptations triggered as a result of goal violations, where the
blue boxplots denote a zoom adaptation (i.e., zooming in to cull
enemies drawn or zooming out to include more enemies on screen)
and the orange boxplots denote an adaptation to the enemy agent
(i.e., updating the number of enemies spawning). In our experi-
ment, we found the runs produced by Computer D tended to have a
higher framerate than our framerate maximum in both our camera
zoom and FPS utility values, leading to no or few new adaptations
being adopted by either model with the exception of a single run.
4As we used Godot for our game, off-screen entities are automatically culled and
therefore FPS is improved.

The other configurations demonstrated more desirable behavior,
with several adaptations being captured in each run in both the
enemy and game engine goal models. Based on these trends, with
the exception of Computer D, the enemy model’s adaptations in-
dicate that the model is achieving DPA. Our models also support
adaptations in terms of enemy speed and size, however we leave
formal studies of DDA in this system for future work.

We performed the Mann-Whitney U-test to determine statisti-
cal significance (i.e., 𝑝 < 0.05) for each presented adaptation met-
ric (i.e., Zoom_Adaptations between Computers A, B, C, and D,
Enemy_Adaptations between Computers A, B, C, and D). There
exists a significant difference between each computer configuration
for both adaptation types, suggesting that the hardware configura-
tion has a direct impact on the number of adaptations necessary
for DPA-specific metrics.

We further examined the behavior of these adaptations by moni-
toring the utility values calculated for Goal (E.d) (i.e., [Achieve]
Ideal Number of Enemies) and Goal (G.e) (i.e., [Achieve] Ideal Cam-
era Zoom) over time. The utility function for Goal (G.e) was pre-
viously presented in Equation 1. Equation 2 is the utility function
derived for Goal (E.d), where the number of enemies that can
spawn per second has a direct relationship with 𝑢𝑡𝑖𝑙𝐺.𝑑 (i.e., maxi-
mize framerate) and 𝑥 represents the current timestep. The utility
value for 𝑢𝑡𝑖𝑙𝐺.𝑑 is cubed in this function as a design choice with
respect to observed game behavior. For presentation purposes we
do not include the utility function for 𝑢𝑡𝑖𝑙𝐺.𝑑 .

𝑢𝑡𝑖𝑙𝐸.𝑑𝑥 =

{
.95(𝑢𝑡𝑖𝑙𝐸.𝑑𝑥−1) + .05(𝑢𝑡𝑖𝑙𝐺.𝑑)3 if 𝑠𝑚𝑜𝑜𝑡ℎ𝑖𝑛𝑔

(𝑢𝑡𝑖𝑙𝐺.𝑑)3 if not 𝑠𝑚𝑜𝑜𝑡ℎ𝑖𝑛𝑔
(2)

Equation 2 has a direct relationship with its previous utility
value if smoothing is enabled, where smoothing will determine if
the value is directly set or gradually interpolated.

𝑠𝑚𝑜𝑜𝑡ℎ𝑖𝑛𝑔𝑥 = (𝑢𝑡𝑖𝑙𝐺.𝑑 > .45) OR
(𝑠𝑚𝑜𝑜𝑡ℎ𝑖𝑛𝑔𝑥−1 AND 𝑢𝑡𝑖𝑙𝐺.𝑑 > .4) (3)

Equation 2 can be transformed into the number of enemies that
are allowed to spawn using Equation 4. Here, we map the normal-
ized utility value on [0.0, 1.0] to the range of allowable enemies,
where𝑚𝑖𝑛 and𝑚𝑎𝑥 are configured to be 0 and 2 enemies to spawn
per second, respectively.

𝑛𝑢𝑚_𝑒𝑛𝑒𝑚𝑖𝑒𝑠𝑥 = (𝑢𝑡𝑖𝑙𝑥) (|𝑚𝑎𝑥 −𝑚𝑖𝑛 |) +𝑚𝑖𝑛 (4)

Figure 5 presents the utility values for Goal (E.d) (i.e., [Achieve]
Ideal Number of Enemies, measured by 𝑢𝑡𝑖𝑙𝐸.𝑑) and Goal (G.e) (i.e.,
[Achieve] Ideal Camera Zoom, measured by 𝑢𝑡𝑖𝑙𝐺.𝑒) for a single
experimental replicate. As can be seen from the figure, system
agents begin to perform adaptations once the calculated utility
values for each goal trend downward. While some adaptations
immediately resolve the issue (i.e., enemy adaptation at timestep 35
for Goal (E.e)), others take longer to resolve the issue (i.e., both
adaptations applied at timestep 30 for both goals).

In the latter case, multiple adaptations are required to improve
utility values. Interestingly, there are also examples of adversarial
adaptations in this figure. At approximately timestep 25 there is

FSE Companion ’25, June 23–28, 2025, Trondheim, Norway Steven Streasick, Erik M. Fredericks, Byron DeVries, and Ira Woodring

Figure 4: The number of adaptations between all runs for each configuration.

Figure 5: Utility values for Goals (E.d) and (G.e) with corresponding adaptations over time for a single experimental replicate
with Computer A.

an enemy adaptation followed by both adaptations. 𝑢𝑡𝑖𝑙𝐸.𝑑 immedi-
ately trends downwards, however 𝑢𝑡𝑖𝑙𝐺.𝑒 trends upwards. Neither
utility function presents a full violation, however, as our config-
ured adaptations appear to be sufficient to maintain a level of goal
satisficement.

The presented utility values are fairly chaotic and can lead to
a player experience where the camera zooms in and out multi-
ple times per-run to resolve FPS issues, leading to future work
in “smoothing” the resolution of transient utility function viola-
tions/SAS reconfigurations to provide the player with a better visual
experience. For presentation purposes we only show results from

Incorporating Multiple Self-Adaptive Agents in Games FSE Companion ’25, June 23–28, 2025, Trondheim, Norway

one run with Computer A, however these results are fairly similar
across the replicates for configurations A–C. Interestingly, Com-
puter D’s calculated utility values over time for Goal (E.d) hold at
1.0 over the length of the gamewith a small number of minor adapta-
tions occurring during the run. This result leads us to conclude that
more study is necessary in generalizing our SAS implementation
to a broad range of hardware configurations, where future work
could consider automatically presenting a similar user experience
across diverse hardware configurations. This further implies that
the game may get more difficult the higher the framerate, though
we leave a deeper study on DDA to our future work.
Threats to Validity: This study was a proof of concept to demon-
strate the feasibility of incorporating multiple MAPE-K loops into a
game environment. One threat to validity includes the small sample
set of both users and device configurations used in the experiments,
where future studies would include a large group of diverse partici-
pants focusing on engagement, flow state, etc. Another threat to
validity lies in the reproducibility of results with respect to humans
in the loop. While our game executions can be seeded for deter-
ministic randomness, the behavior of humans cannot and again a
larger test group of users is necessary for deeper studies. Our mea-
surement of FPS may also be considered a threat to validity as we
check the framerate each timestep using a built-in Godot function
and do not perform any graphical or game-oriented optimizations
in terms of CPU/GPU performance within our game. As such there
may be processes happening within the Godot 4.3 game engine that
we are not aware of to automatically optimize the application or
calculate the framerate at different times. Another identified threat
to validity includes the derivation and translation of goals, utility
functions, and software artifacts within the Godot game engine
as there may exist a misinterpretation between software design
and implementation. Lastly, a threat to validity lies in the relative
simplicity of the game we developed. A more complex game with
multiple self-adaptive feedback loops may yield different results.

5 Related Work
This section presents related work on DDA, DPA, self-adaptation,
and multi-agent systems in games.

5.1 Dynamic Difficulty and Performance
Adjustment in Games

There exists a wide body of research in performing DDA to op-
timize the experience for the player in different facets [2, 23, 37].
Two of the main concerns with implementing DDA lie in measur-
ing player satisfaction and adapting the game to maximize that
satisfaction [29]. Zohaib presented a survey on implementing DDA
within games, describing the flow channel and then presenting the
state of the art with respect to several high-level classifications [37].
Hunicke presented an overview of requirements and metrics that
can be used to support DDA activities [13]. Xue et al. present an
approach for maximizing player engagement via DDA by using
probabilistic graphs and modeling it as an optimization problem,
demonstrating their technique’s effectiveness on a globally-released
mobile video game title [35]. There also exist techniques for us-
ing artificial intelligence [30], deep learning [24], and Bayesian
modeling [12] in performing DDA in games. Most closely related,

Souza et al. presented a self-adaptive approach for improving the
player experience by maximizing their time within a monitored
flow state, where difficulty comprises multiple “knobs” that can be
adjusted by the game designer and autonomous adaptations can
scale difficulty as needed [31]. While each of these works imple-
ment DDA in some fashion, our approach focuses on the interplay
between performance optimization and player engagement via goal
modeling and derived utility functions.

With respect to DPA there appears to be much less video game-
focused research, however this may be explained by the fact that
generic performance and application optimization can be consid-
ered to be applicable to a wider range of systems. Focusing on fram-
erate, Sun and Wu explored methods for optimizing this metric
in a cloud gaming environment where latency and geographic re-
gion are primary concerns [32]. Klein et al. investigated how frame
timing can impact the perception of “smoothness” experienced
in games that use a first-person perspective with a user-focused
study that presented recommended graphics settings [16]. More
broadly, DPA has been deployed to an Internet of Things applica-
tion for optimizing message queuing concerns, thereby enhancing
network performance [22]. Arcelli presented an approach that uses
a multi-objective search heuristic to discover ideal self-adaptive ar-
chitectures in an Internet of Things environment [1]. Our approach
to DPA was to enable each separate MAPE-K agent in our system to
influence performance with respect to the frame rate and number
of spawned/drawn entities on screen.

5.2 Self-Adaptation in Games
While self-adaptation has traditionally been applied to safety-critical
systems and networked architectures, there exists a body of work in
leveraging the MAPE-K loop within gaming. The work previously
described by Souza et al. incorporates a MAPE-K loop with the aim
of maximizing player engagement by adapting difficulty to their
needs and ensuring they stay within a flow state [31]. Yamagata et
al. presented an empirical study in which a MAPE-K loop manages
an online game with the aim of reducing network-oriented errors,
where the components of the MAPE-K loop were distributed be-
tween the client(s) and server [36]. Our prior work [11] presented a
proof of concept using a single MAPE-K as a mechanism for solely
optimizing framerate. Our goal with this paper was to extend the
concepts presented in each of these papers, however our focus was
to incorporate multiple, distinct agents that aimed to optimize game
performance as well as player engagement.

To that end, there also exists work in combining video games
with multi-agent systems. Pons et al. presented work towards a
multi-agent architecture as a model for learning and generating
scenarios for the player to engage with [25]. Games have been
conceptualized as an expression of a multi-agent system, where a
game engine was developed to create games that exist as individual
agents and are generated according to formal theorems [20]. Multi-
agent systems have additionally been proposed as a mechanism for
personalizing a (serious) game to player needs through an adaptive
approach rooted in DDA [3]. While each of these techniques imple-
ments multiple agents, our approach was to enable each agent to
have its own individual MAPE-K loop that can impact the system
as a whole or the agent itself.

FSE Companion ’25, June 23–28, 2025, Trondheim, Norway Steven Streasick, Erik M. Fredericks, Byron DeVries, and Ira Woodring

6 Discussion
This paper has presented a study on the feasibility of using multiple
self-adaptive agents within a game environment. To demonstrate
our approachwe developed a proof-of-concept gamewhere a player-
controlled character was required to survive for a length of time by
eating smaller enemies and avoiding larger enemies as adaptations
were triggered as a result of monitored performance metrics. There
were two self-adaptive feedback loops implemented: one controlled
by the enemy entities and one controlled by the game engine. Both
loops operated independently and could self-reconfigure as needed,
based on governing goal models and derived utility functions. Ex-
perimental results suggest that multiple self-adaptive agents can
positively impact a game experience for the player by improving the
framerate and updating enemy characteristics at run time, thereby
performing DPA and supporting DDA.

Future paths of research include extending the capabilities of
our existing MAPE-K loops with deeper reconfiguration strategies,
increasing the number of distinct agents within the game, designing
and performing an empirical investigation into DDA and multiple
self-adaptive agents, and performing a large user-focused study
to focus on the impact of self-adaptation in games with respect to
players of different skill levels with varying hardware configura-
tions.

Acknowledgments
We gratefully acknowledge support from the Michigan Space Grant
Consortium (award number 80NSSC20M0124) and Grand Valley
State University.

References
[1] Davide Arcelli. 2020. A multi-objective performance optimization approach

for self-adaptive architectures. In European Conference on Software Architecture.
Springer, 139–147.

[2] Sander Bakkes, Chek Tien Tan, and Yusuf Pisan. 2012. Personalised gaming:
a motivation and overview of literature. In Proceedings of the 8th Australasian
Conference on Interactive Entertainment: Playing the System. 1–10.

[3] Spyridon Blatsios and Ioannis Refanidis. 2019. Towards an adaption and per-
sonalisation solution based on multi agent system applied on serious games. In
Artificial Intelligence Applications and Innovations: 15th IFIP WG 12.5 International
Conference, AIAI 2019. Springer, 584–594.

[4] Yuriy Brun, Giovanna Di Marzo Serugendo, Cristina Gacek, Holger Giese, Holger
Kienle, Marin Litoiu, Hausi Müller, Mauro Pezzè, and Mary Shaw. 2009. Engi-
neering self-adaptive systems through feedback loops. Software engineering for
self-adaptive systems (2009), 48–70.

[5] Radu Calinescu, RaffaelaMirandola, Diego Perez-Palacin, and DannyWeyns. 2020.
Understanding uncertainty in self-adaptive systems. In 2020 ieee international
conference on autonomic computing and self-organizing systems (acsos). IEEE,
242–251.

[6] Betty H. C. Cheng, Pete Sawyer, Nelly Bencomo, and Jon Whittle. 2009. A Goal-
Based Modeling Approach to Develop Requirements of an Adaptive System with
Environmental Uncertainty. In Proc. of the 12th International Conference on Model
Driven Engineering Languages and Systems. Springer-Verlag, Berlin, Heidelberg,
468–483.

[7] Lawrence Chung, B Nixon, E Yu, and J Mylopoulos. 2000. Non-functional Re-
quirements. Software Engineering (2000).

[8] Mihaly Csikszentmihalyi. 2000. Beyond boredom and anxiety. Jossey-bass.
[9] Anne Dardenne, Axel Van Lamsweerde, and Stephen Fickas. 1993. Goal-directed

requirements acquisition. Science of computer programming 20, 1 (1993), 3–50.
[10] Paul deGrandis and Giuseppe Valetto. 2009. Elicitation and Utilization of

Application-level Utility Functions. In Proc. of the 6th International Conference on
Autonomic Computing (Barcelona, Spain) (ICAC ’09). ACM, 107–116.

[11] Erik M. Fredericks, Byron DeVries, and Jared M. Moore. 2022. Towards self-
adaptive game logic. In Proceedings of the 6th International ICSE Workshop on
Games and Software Engineering: Engineering Fun, Inspiration, and Motivation
(ICSE ’22). ACM, 24–29. doi:10.1145/3524494.3527625

[12] Miguel González-Duque, Rasmus Berg Palm, and Sebastian Risi. 2021. Fast
game content adaptation through Bayesian-based player modelling. In 2021 IEEE
Conference on Games (CoG). IEEE, 01–08.

[13] Robin Hunicke. 2005. The case for dynamic difficulty adjustment in games. In
Proceedings of the 2005 ACM SIGCHI International Conference on Advances in
computer entertainment technology. 429–433.

[14] Nicholas R. Jennings. 1999. Agent-Oriented Software Engineering. Springer Berlin
Heidelberg, Berlin, Heidelberg, 1–7. doi:10.1007/3-540-48437-X_1

[15] J.O. Kephart and D.M. Chess. 2003. The vision of autonomic computing. Computer
36, 1 (January 2003), 41 – 50.

[16] Devi Klein, Josef Spjut, Ben Boudaoud, and Joohwan Kim. 2024. Variable Frame
Timing Affects Perception of Smoothness in First-Person Gaming. In 2024 IEEE
Conference on Games (CoG). IEEE, 1–8.

[17] Manuel Kolp, Paolo Giorgini, and John Mylopoulos. 2002. A Goal-Based Orga-
nizational Perspective on Multi-agent Architectures. In Intelligent Agents VIII.
128–140.

[18] Raph Koster. 2013. Theory of fun for game design. " O’Reilly Media, Inc.".
[19] Michael Austin Langford and Betty HC Cheng. 2019. Enhancing learning-enabled

software systems to address environmental uncertainty. In 2019 IEEE International
Conference on Autonomic Computing (ICAC). IEEE, 115–124.

[20] Carlos Marín-Lora, Miguel Chover, José M Sotoca, and Luis A García. 2020. A
game engine to make games as multi-agent systems. Advances in Engineering
Software 140 (2020), 102732.

[21] P.K. McKinley, S.M. Sadjadi, E.P. Kasten, and B. H. C. Cheng. 2004. Composing
adaptive software. Computer 37, 7 (July 2004), 56 – 64.

[22] Jie Meng, Xiaochao Wang, Jixin Hou, Zidong Wu, Wenbin Wang, Rui Zhang, and
Zhu Qiao. 2022. A dynamic performance adjustment algorithm based on negative
feedback mechanism of power internet of things. In 2022 IEEE 8th International
Conference on Computer and Communications (ICCC). IEEE, 811–816.

[23] Fatemeh Mortazavi, Hadi Moradi, and Abdol-Hossein Vahabie. 2024. Dynamic
difficulty adjustment approaches in video games: a systematic literature review.
Multimedia Tools and Applications 83, 35 (2024), 83227–83274.

[24] Dvir Ben Or, Michael Kolomenkin, and Gil Shabat. 2021. Dl-dda-deep learning
based dynamic difficulty adjustment with ux and gameplay constraints. In 2021
IEEE Conference on Games (CoG). IEEE, 1–7.

[25] Luc Pons, Carole Bernon, and Pierre Glize. 2012. Scenario control for (serious)
games using self-organizing multi-agent systems. In 2012 IEEE International
Conference on Complex Systems (ICCS). IEEE, 1–6.

[26] A.J. Ramirez, A.C. Jensen, B. H. C. Cheng, and D.B. Knoester. 2011. Automatically
exploring how uncertainty impacts behavior of dynamically adaptive systems.
In 26th IEEE/ACM International Conference on Automated Software Engineering
(ASE). 568 –571. (Preliminary work described in short paper)..

[27] Andres J. Ramirez and Betty H. C. Cheng. 2011. Automatically Deriving Utility
Functions for Monitoring Software Requirements. In Proceedings of the 2011
International Conference on Model Driven Engineering Languages and Systems
Conference. Wellington, New Zealand, 501–516.

[28] P. Sawyer, N. Bencomo, J. Whittle, E. Letier, and A. Finkelstein. 2010.
Requirements-Aware Systems: A Research Agenda for RE for Self-adaptive Sys-
tems. In Requirements Engineering Conference (RE), 2010 18th IEEE International.
95 –103.

[29] Gabriel K Sepulveda, Felipe Besoain, and Nicolas A Barriga. 2019. Exploring
dynamic difficulty adjustment in videogames. In 2019 IEEE CHILEAN Conference
on Electrical, Electronics Engineering, Information and Communication Technologies
(CHILECON). IEEE, 1–6.

[30] Mirna Paula Silva, Victor do Nascimento Silva, and Luiz Chaimowicz. 2015.
Dynamic difficulty adjustment through an adaptive AI. In 2015 14th Brazilian
symposium on computer games and digital entertainment (SBGames). IEEE, 173–
182.

[31] Carlos Henrique R Souza, Saulo S de Oliveira, Luciana O Berretta, and Sergio T
Carvalho. 2025. Extending a MAPE-K loop-based framework for Dynamic Diffi-
culty Adjustment in single-player games. Entertainment Computing 52 (2025).

[32] Kairan Sun and Dapeng Wu. 2015. Video rate control strategies for cloud gaming.
Journal of Visual Communication and Image Representation 30 (2015), 234–241.

[33] Axel van Lamsweerde. 2009. Requirements Engineering: From System Goals to
UML Models to Software Specifications. Wiley.

[34] William E. Walsh, Gerald Tesauro, Jeffrey O. Kephart, and Rajarshi Das. 2004. Util-
ity functions in autonomic systems. In Proceedings of the First IEEE International
Conference on Autonomic Computing. IEEE Computer Society, 70–77.

[35] Su Xue, MengWu, John Kolen, Navid Aghdaie, and Kazi A Zaman. 2017. Dynamic
difficulty adjustment for maximized engagement in digital games. In Proceedings
of the 26th international conference on world wide web companion. 465–471.

[36] Satoru Yamagata, Hiroyuki Nakagawa, Yuichi Sei, Yasuyuki Tahara, and Akihiko
Ohsuga. 2019. Self-Adaptation for Heterogeneous Client-Server Online Games.
In International Conference on Intelligence Science. Springer, 65–79.

[37] Mohammad Zohaib. [n. d.]. Dynamic Difficulty Adjustment (DDA) in Computer
Games: A Review. Advances in Human-Computer Interaction 2018, 1 ([n. d.]).
doi:10.1155/2018/5681652

https://doi.org/10.1145/3524494.3527625
https://doi.org/10.1007/3-540-48437-X_1
https://doi.org/10.1155/2018/5681652

	1 Introduction
	2 Background
	2.1 Motivating Example
	2.2 Goal Modeling
	2.3 Self-Adaptive Systems

	3 Approach
	3.1 Inputs, Outputs, and Assumptions
	3.2 Adaptation Technique

	4 Experimental Results
	4.1 Experimental Configuration
	4.2 Experimental Results

	5 Related Work
	5.1 Dynamic Difficulty and Performance Adjustment in Games
	5.2 Self-Adaptation in Games

	6 Discussion
	References

